Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. X
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(-3\right)}{5\times 7}X-\frac{1}{6}X\times \frac{3}{2}+\frac{1}{14}X\times \frac{2}{5}
Multiply \frac{2}{5} times -\frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-6}{35}X-\frac{1}{6}X\times \frac{3}{2}+\frac{1}{14}X\times \frac{2}{5}
Do the multiplications in the fraction \frac{2\left(-3\right)}{5\times 7}.
-\frac{6}{35}X-\frac{1}{6}X\times \frac{3}{2}+\frac{1}{14}X\times \frac{2}{5}
Fraction \frac{-6}{35} can be rewritten as -\frac{6}{35} by extracting the negative sign.
-\frac{6}{35}X-\frac{1\times 3}{6\times 2}X+\frac{1}{14}X\times \frac{2}{5}
Multiply \frac{1}{6} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{6}{35}X-\frac{3}{12}X+\frac{1}{14}X\times \frac{2}{5}
Do the multiplications in the fraction \frac{1\times 3}{6\times 2}.
-\frac{6}{35}X-\frac{1}{4}X+\frac{1}{14}X\times \frac{2}{5}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
-\frac{59}{140}X+\frac{1}{14}X\times \frac{2}{5}
Combine -\frac{6}{35}X and -\frac{1}{4}X to get -\frac{59}{140}X.
-\frac{59}{140}X+\frac{1\times 2}{14\times 5}X
Multiply \frac{1}{14} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{59}{140}X+\frac{2}{70}X
Do the multiplications in the fraction \frac{1\times 2}{14\times 5}.
-\frac{59}{140}X+\frac{1}{35}X
Reduce the fraction \frac{2}{70} to lowest terms by extracting and canceling out 2.
-\frac{11}{28}X
Combine -\frac{59}{140}X and \frac{1}{35}X to get -\frac{11}{28}X.
\frac{\mathrm{d}}{\mathrm{d}X}(\frac{2\left(-3\right)}{5\times 7}X-\frac{1}{6}X\times \frac{3}{2}+\frac{1}{14}X\times \frac{2}{5})
Multiply \frac{2}{5} times -\frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}X}(\frac{-6}{35}X-\frac{1}{6}X\times \frac{3}{2}+\frac{1}{14}X\times \frac{2}{5})
Do the multiplications in the fraction \frac{2\left(-3\right)}{5\times 7}.
\frac{\mathrm{d}}{\mathrm{d}X}(-\frac{6}{35}X-\frac{1}{6}X\times \frac{3}{2}+\frac{1}{14}X\times \frac{2}{5})
Fraction \frac{-6}{35} can be rewritten as -\frac{6}{35} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}X}(-\frac{6}{35}X-\frac{1\times 3}{6\times 2}X+\frac{1}{14}X\times \frac{2}{5})
Multiply \frac{1}{6} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}X}(-\frac{6}{35}X-\frac{3}{12}X+\frac{1}{14}X\times \frac{2}{5})
Do the multiplications in the fraction \frac{1\times 3}{6\times 2}.
\frac{\mathrm{d}}{\mathrm{d}X}(-\frac{6}{35}X-\frac{1}{4}X+\frac{1}{14}X\times \frac{2}{5})
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
\frac{\mathrm{d}}{\mathrm{d}X}(-\frac{59}{140}X+\frac{1}{14}X\times \frac{2}{5})
Combine -\frac{6}{35}X and -\frac{1}{4}X to get -\frac{59}{140}X.
\frac{\mathrm{d}}{\mathrm{d}X}(-\frac{59}{140}X+\frac{1\times 2}{14\times 5}X)
Multiply \frac{1}{14} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}X}(-\frac{59}{140}X+\frac{2}{70}X)
Do the multiplications in the fraction \frac{1\times 2}{14\times 5}.
\frac{\mathrm{d}}{\mathrm{d}X}(-\frac{59}{140}X+\frac{1}{35}X)
Reduce the fraction \frac{2}{70} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}X}(-\frac{11}{28}X)
Combine -\frac{59}{140}X and \frac{1}{35}X to get -\frac{11}{28}X.
-\frac{11}{28}X^{1-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{11}{28}X^{0}
Subtract 1 from 1.
-\frac{11}{28}
For any term t except 0, t^{0}=1.