Solve for x
x=\frac{23}{30}\approx 0.766666667
Graph
Share
Copied to clipboard
12-105x+15\left(\frac{x}{1}+\frac{1}{3}\right)=-75+30x
Multiply both sides of the equation by 30, the least common multiple of 5,2,3.
12-105x+15\left(x+\frac{1}{3}\right)=-75+30x
Anything divided by one gives itself.
12-105x+15x+15\times \frac{1}{3}=-75+30x
Use the distributive property to multiply 15 by x+\frac{1}{3}.
12-105x+15x+\frac{15}{3}=-75+30x
Multiply 15 and \frac{1}{3} to get \frac{15}{3}.
12-105x+15x+5=-75+30x
Divide 15 by 3 to get 5.
12-90x+5=-75+30x
Combine -105x and 15x to get -90x.
17-90x=-75+30x
Add 12 and 5 to get 17.
17-90x-30x=-75
Subtract 30x from both sides.
17-120x=-75
Combine -90x and -30x to get -120x.
-120x=-75-17
Subtract 17 from both sides.
-120x=-92
Subtract 17 from -75 to get -92.
x=\frac{-92}{-120}
Divide both sides by -120.
x=\frac{23}{30}
Reduce the fraction \frac{-92}{-120} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}