Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{5}-\frac{1}{3}x+5=x^{2}-5
Use the distributive property to multiply -\frac{1}{3} by x-15.
\frac{27}{5}-\frac{1}{3}x=x^{2}-5
Add \frac{2}{5} and 5 to get \frac{27}{5}.
\frac{27}{5}-\frac{1}{3}x-x^{2}=-5
Subtract x^{2} from both sides.
\frac{27}{5}-\frac{1}{3}x-x^{2}+5=0
Add 5 to both sides.
\frac{52}{5}-\frac{1}{3}x-x^{2}=0
Add \frac{27}{5} and 5 to get \frac{52}{5}.
-x^{2}-\frac{1}{3}x+\frac{52}{5}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\left(-\frac{1}{3}\right)^{2}-4\left(-1\right)\times \frac{52}{5}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -\frac{1}{3} for b, and \frac{52}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1}{9}-4\left(-1\right)\times \frac{52}{5}}}{2\left(-1\right)}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1}{9}+4\times \frac{52}{5}}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1}{9}+\frac{208}{5}}}{2\left(-1\right)}
Multiply 4 times \frac{52}{5}.
x=\frac{-\left(-\frac{1}{3}\right)±\sqrt{\frac{1877}{45}}}{2\left(-1\right)}
Add \frac{1}{9} to \frac{208}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{1}{3}\right)±\frac{\sqrt{9385}}{15}}{2\left(-1\right)}
Take the square root of \frac{1877}{45}.
x=\frac{\frac{1}{3}±\frac{\sqrt{9385}}{15}}{2\left(-1\right)}
The opposite of -\frac{1}{3} is \frac{1}{3}.
x=\frac{\frac{1}{3}±\frac{\sqrt{9385}}{15}}{-2}
Multiply 2 times -1.
x=\frac{\frac{\sqrt{9385}}{15}+\frac{1}{3}}{-2}
Now solve the equation x=\frac{\frac{1}{3}±\frac{\sqrt{9385}}{15}}{-2} when ± is plus. Add \frac{1}{3} to \frac{\sqrt{9385}}{15}.
x=-\frac{\sqrt{9385}}{30}-\frac{1}{6}
Divide \frac{1}{3}+\frac{\sqrt{9385}}{15} by -2.
x=\frac{-\frac{\sqrt{9385}}{15}+\frac{1}{3}}{-2}
Now solve the equation x=\frac{\frac{1}{3}±\frac{\sqrt{9385}}{15}}{-2} when ± is minus. Subtract \frac{\sqrt{9385}}{15} from \frac{1}{3}.
x=\frac{\sqrt{9385}}{30}-\frac{1}{6}
Divide \frac{1}{3}-\frac{\sqrt{9385}}{15} by -2.
x=-\frac{\sqrt{9385}}{30}-\frac{1}{6} x=\frac{\sqrt{9385}}{30}-\frac{1}{6}
The equation is now solved.
\frac{2}{5}-\frac{1}{3}x+5=x^{2}-5
Use the distributive property to multiply -\frac{1}{3} by x-15.
\frac{27}{5}-\frac{1}{3}x=x^{2}-5
Add \frac{2}{5} and 5 to get \frac{27}{5}.
\frac{27}{5}-\frac{1}{3}x-x^{2}=-5
Subtract x^{2} from both sides.
-\frac{1}{3}x-x^{2}=-5-\frac{27}{5}
Subtract \frac{27}{5} from both sides.
-\frac{1}{3}x-x^{2}=-\frac{52}{5}
Subtract \frac{27}{5} from -5 to get -\frac{52}{5}.
-x^{2}-\frac{1}{3}x=-\frac{52}{5}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-\frac{1}{3}x}{-1}=-\frac{\frac{52}{5}}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{\frac{1}{3}}{-1}\right)x=-\frac{\frac{52}{5}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+\frac{1}{3}x=-\frac{\frac{52}{5}}{-1}
Divide -\frac{1}{3} by -1.
x^{2}+\frac{1}{3}x=\frac{52}{5}
Divide -\frac{52}{5} by -1.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{52}{5}+\left(\frac{1}{6}\right)^{2}
Divide \frac{1}{3}, the coefficient of the x term, by 2 to get \frac{1}{6}. Then add the square of \frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{52}{5}+\frac{1}{36}
Square \frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{1877}{180}
Add \frac{52}{5} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{6}\right)^{2}=\frac{1877}{180}
Factor x^{2}+\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{1877}{180}}
Take the square root of both sides of the equation.
x+\frac{1}{6}=\frac{\sqrt{9385}}{30} x+\frac{1}{6}=-\frac{\sqrt{9385}}{30}
Simplify.
x=\frac{\sqrt{9385}}{30}-\frac{1}{6} x=-\frac{\sqrt{9385}}{30}-\frac{1}{6}
Subtract \frac{1}{6} from both sides of the equation.