Evaluate
-\frac{\theta }{15}+\frac{7}{30}
Factor
\frac{7-2\theta }{30}
Graph
Share
Copied to clipboard
\frac{8}{20}-\frac{1}{15}\theta -\frac{1}{20}-\frac{7}{60}
Least common multiple of 5 and 20 is 20. Convert \frac{2}{5} and \frac{1}{20} to fractions with denominator 20.
\frac{8-1}{20}-\frac{1}{15}\theta -\frac{7}{60}
Since \frac{8}{20} and \frac{1}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{20}-\frac{1}{15}\theta -\frac{7}{60}
Subtract 1 from 8 to get 7.
\frac{21}{60}-\frac{1}{15}\theta -\frac{7}{60}
Least common multiple of 20 and 60 is 60. Convert \frac{7}{20} and \frac{7}{60} to fractions with denominator 60.
\frac{21-7}{60}-\frac{1}{15}\theta
Since \frac{21}{60} and \frac{7}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{14}{60}-\frac{1}{15}\theta
Subtract 7 from 21 to get 14.
\frac{7}{30}-\frac{1}{15}\theta
Reduce the fraction \frac{14}{60} to lowest terms by extracting and canceling out 2.
\frac{14-4\theta }{60}
Factor out \frac{1}{60}.
-4\theta +14
Consider 24-4\theta -3-7. Multiply and combine like terms.
2\left(-2\theta +7\right)
Consider -4\theta +14. Factor out 2.
\frac{-2\theta +7}{30}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}