Solve for x
x = -\frac{31}{2} = -15\frac{1}{2} = -15.5
Graph
Share
Copied to clipboard
35\left(\frac{2}{5}\left(x-1\right)\left(2x-3\right)+\frac{x-1}{7}\right)-7\left(x-3\right)\left(2x-3\right)=14x^{2}+5
Multiply both sides of the equation by 35, the least common multiple of 5,7.
35\left(\left(\frac{2}{5}x-\frac{2}{5}\right)\left(2x-3\right)+\frac{x-1}{7}\right)-7\left(x-3\right)\left(2x-3\right)=14x^{2}+5
Use the distributive property to multiply \frac{2}{5} by x-1.
35\left(\frac{4}{5}x^{2}-2x+\frac{6}{5}+\frac{x-1}{7}\right)-7\left(x-3\right)\left(2x-3\right)=14x^{2}+5
Use the distributive property to multiply \frac{2}{5}x-\frac{2}{5} by 2x-3 and combine like terms.
35\left(\frac{4}{5}x^{2}-2x+\frac{6\times 7}{35}+\frac{5\left(x-1\right)}{35}\right)-7\left(x-3\right)\left(2x-3\right)=14x^{2}+5
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 7 is 35. Multiply \frac{6}{5} times \frac{7}{7}. Multiply \frac{x-1}{7} times \frac{5}{5}.
35\left(\frac{4}{5}x^{2}-2x+\frac{6\times 7+5\left(x-1\right)}{35}\right)-7\left(x-3\right)\left(2x-3\right)=14x^{2}+5
Since \frac{6\times 7}{35} and \frac{5\left(x-1\right)}{35} have the same denominator, add them by adding their numerators.
35\left(\frac{4}{5}x^{2}-2x+\frac{42+5x-5}{35}\right)-7\left(x-3\right)\left(2x-3\right)=14x^{2}+5
Do the multiplications in 6\times 7+5\left(x-1\right).
35\left(\frac{4}{5}x^{2}-2x+\frac{37+5x}{35}\right)-7\left(x-3\right)\left(2x-3\right)=14x^{2}+5
Combine like terms in 42+5x-5.
28x^{2}-70x+35\times \frac{37+5x}{35}-7\left(x-3\right)\left(2x-3\right)=14x^{2}+5
Use the distributive property to multiply 35 by \frac{4}{5}x^{2}-2x+\frac{37+5x}{35}.
28x^{2}-70x+\frac{35\left(37+5x\right)}{35}-7\left(x-3\right)\left(2x-3\right)=14x^{2}+5
Express 35\times \frac{37+5x}{35} as a single fraction.
28x^{2}-70x+37+5x-7\left(x-3\right)\left(2x-3\right)=14x^{2}+5
Cancel out 35 and 35.
28x^{2}-65x+37-7\left(x-3\right)\left(2x-3\right)=14x^{2}+5
Combine -70x and 5x to get -65x.
28x^{2}-65x+37-7\left(x-3\right)\left(2x-3\right)-14x^{2}=5
Subtract 14x^{2} from both sides.
28x^{2}-65x+37+\left(-7x+21\right)\left(2x-3\right)-14x^{2}=5
Use the distributive property to multiply -7 by x-3.
28x^{2}-65x+37-14x^{2}+63x-63-14x^{2}=5
Use the distributive property to multiply -7x+21 by 2x-3 and combine like terms.
14x^{2}-65x+37+63x-63-14x^{2}=5
Combine 28x^{2} and -14x^{2} to get 14x^{2}.
14x^{2}-2x+37-63-14x^{2}=5
Combine -65x and 63x to get -2x.
14x^{2}-2x-26-14x^{2}=5
Subtract 63 from 37 to get -26.
-2x-26=5
Combine 14x^{2} and -14x^{2} to get 0.
-2x=5+26
Add 26 to both sides.
-2x=31
Add 5 and 26 to get 31.
x=\frac{31}{-2}
Divide both sides by -2.
x=-\frac{31}{2}
Fraction \frac{31}{-2} can be rewritten as -\frac{31}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}