Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{5}\left(-3\right)x+\frac{2}{5}\times 2y+\frac{2}{5}\left(-1\right)-\frac{1}{3}\left(2x-3y+4\right)
Use the distributive property to multiply \frac{2}{5} by -3x+2y-1.
\frac{2\left(-3\right)}{5}x+\frac{2}{5}\times 2y+\frac{2}{5}\left(-1\right)-\frac{1}{3}\left(2x-3y+4\right)
Express \frac{2}{5}\left(-3\right) as a single fraction.
\frac{-6}{5}x+\frac{2}{5}\times 2y+\frac{2}{5}\left(-1\right)-\frac{1}{3}\left(2x-3y+4\right)
Multiply 2 and -3 to get -6.
-\frac{6}{5}x+\frac{2}{5}\times 2y+\frac{2}{5}\left(-1\right)-\frac{1}{3}\left(2x-3y+4\right)
Fraction \frac{-6}{5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
-\frac{6}{5}x+\frac{2\times 2}{5}y+\frac{2}{5}\left(-1\right)-\frac{1}{3}\left(2x-3y+4\right)
Express \frac{2}{5}\times 2 as a single fraction.
-\frac{6}{5}x+\frac{4}{5}y+\frac{2}{5}\left(-1\right)-\frac{1}{3}\left(2x-3y+4\right)
Multiply 2 and 2 to get 4.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}-\frac{1}{3}\left(2x-3y+4\right)
Multiply \frac{2}{5} and -1 to get -\frac{2}{5}.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}-\frac{1}{3}\times 2x-\frac{1}{3}\left(-3\right)y-\frac{1}{3}\times 4
Use the distributive property to multiply -\frac{1}{3} by 2x-3y+4.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}+\frac{-2}{3}x-\frac{1}{3}\left(-3\right)y-\frac{1}{3}\times 4
Express -\frac{1}{3}\times 2 as a single fraction.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}-\frac{2}{3}x-\frac{1}{3}\left(-3\right)y-\frac{1}{3}\times 4
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}-\frac{2}{3}x+\frac{-\left(-3\right)}{3}y-\frac{1}{3}\times 4
Express -\frac{1}{3}\left(-3\right) as a single fraction.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}-\frac{2}{3}x+\frac{3}{3}y-\frac{1}{3}\times 4
Multiply -1 and -3 to get 3.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}-\frac{2}{3}x+1y-\frac{1}{3}\times 4
Divide 3 by 3 to get 1.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}-\frac{2}{3}x+1y+\frac{-4}{3}
Express -\frac{1}{3}\times 4 as a single fraction.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}-\frac{2}{3}x+1y-\frac{4}{3}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-\frac{28}{15}x+\frac{4}{5}y-\frac{2}{5}+1y-\frac{4}{3}
Combine -\frac{6}{5}x and -\frac{2}{3}x to get -\frac{28}{15}x.
-\frac{28}{15}x+\frac{9}{5}y-\frac{2}{5}-\frac{4}{3}
Combine \frac{4}{5}y and 1y to get \frac{9}{5}y.
-\frac{28}{15}x+\frac{9}{5}y-\frac{6}{15}-\frac{20}{15}
Least common multiple of 5 and 3 is 15. Convert -\frac{2}{5} and \frac{4}{3} to fractions with denominator 15.
-\frac{28}{15}x+\frac{9}{5}y+\frac{-6-20}{15}
Since -\frac{6}{15} and \frac{20}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{28}{15}x+\frac{9}{5}y-\frac{26}{15}
Subtract 20 from -6 to get -26.
\frac{2}{5}\left(-3\right)x+\frac{2}{5}\times 2y+\frac{2}{5}\left(-1\right)-\frac{1}{3}\left(2x-3y+4\right)
Use the distributive property to multiply \frac{2}{5} by -3x+2y-1.
\frac{2\left(-3\right)}{5}x+\frac{2}{5}\times 2y+\frac{2}{5}\left(-1\right)-\frac{1}{3}\left(2x-3y+4\right)
Express \frac{2}{5}\left(-3\right) as a single fraction.
\frac{-6}{5}x+\frac{2}{5}\times 2y+\frac{2}{5}\left(-1\right)-\frac{1}{3}\left(2x-3y+4\right)
Multiply 2 and -3 to get -6.
-\frac{6}{5}x+\frac{2}{5}\times 2y+\frac{2}{5}\left(-1\right)-\frac{1}{3}\left(2x-3y+4\right)
Fraction \frac{-6}{5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
-\frac{6}{5}x+\frac{2\times 2}{5}y+\frac{2}{5}\left(-1\right)-\frac{1}{3}\left(2x-3y+4\right)
Express \frac{2}{5}\times 2 as a single fraction.
-\frac{6}{5}x+\frac{4}{5}y+\frac{2}{5}\left(-1\right)-\frac{1}{3}\left(2x-3y+4\right)
Multiply 2 and 2 to get 4.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}-\frac{1}{3}\left(2x-3y+4\right)
Multiply \frac{2}{5} and -1 to get -\frac{2}{5}.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}-\frac{1}{3}\times 2x-\frac{1}{3}\left(-3\right)y-\frac{1}{3}\times 4
Use the distributive property to multiply -\frac{1}{3} by 2x-3y+4.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}+\frac{-2}{3}x-\frac{1}{3}\left(-3\right)y-\frac{1}{3}\times 4
Express -\frac{1}{3}\times 2 as a single fraction.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}-\frac{2}{3}x-\frac{1}{3}\left(-3\right)y-\frac{1}{3}\times 4
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}-\frac{2}{3}x+\frac{-\left(-3\right)}{3}y-\frac{1}{3}\times 4
Express -\frac{1}{3}\left(-3\right) as a single fraction.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}-\frac{2}{3}x+\frac{3}{3}y-\frac{1}{3}\times 4
Multiply -1 and -3 to get 3.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}-\frac{2}{3}x+1y-\frac{1}{3}\times 4
Divide 3 by 3 to get 1.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}-\frac{2}{3}x+1y+\frac{-4}{3}
Express -\frac{1}{3}\times 4 as a single fraction.
-\frac{6}{5}x+\frac{4}{5}y-\frac{2}{5}-\frac{2}{3}x+1y-\frac{4}{3}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-\frac{28}{15}x+\frac{4}{5}y-\frac{2}{5}+1y-\frac{4}{3}
Combine -\frac{6}{5}x and -\frac{2}{3}x to get -\frac{28}{15}x.
-\frac{28}{15}x+\frac{9}{5}y-\frac{2}{5}-\frac{4}{3}
Combine \frac{4}{5}y and 1y to get \frac{9}{5}y.
-\frac{28}{15}x+\frac{9}{5}y-\frac{6}{15}-\frac{20}{15}
Least common multiple of 5 and 3 is 15. Convert -\frac{2}{5} and \frac{4}{3} to fractions with denominator 15.
-\frac{28}{15}x+\frac{9}{5}y+\frac{-6-20}{15}
Since -\frac{6}{15} and \frac{20}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{28}{15}x+\frac{9}{5}y-\frac{26}{15}
Subtract 20 from -6 to get -26.