Evaluate
-\frac{6}{5}=-1.2
Factor
-\frac{6}{5} = -1\frac{1}{5} = -1.2
Share
Copied to clipboard
\left(\frac{2}{5}\sqrt{13}+\frac{2}{5}\left(-4\right)\right)\left(\sqrt{13}+4\right)
Use the distributive property to multiply \frac{2}{5} by \sqrt{13}-4.
\left(\frac{2}{5}\sqrt{13}+\frac{2\left(-4\right)}{5}\right)\left(\sqrt{13}+4\right)
Express \frac{2}{5}\left(-4\right) as a single fraction.
\left(\frac{2}{5}\sqrt{13}+\frac{-8}{5}\right)\left(\sqrt{13}+4\right)
Multiply 2 and -4 to get -8.
\left(\frac{2}{5}\sqrt{13}-\frac{8}{5}\right)\left(\sqrt{13}+4\right)
Fraction \frac{-8}{5} can be rewritten as -\frac{8}{5} by extracting the negative sign.
\frac{2}{5}\sqrt{13}\sqrt{13}+\frac{2}{5}\sqrt{13}\times 4-\frac{8}{5}\sqrt{13}-\frac{8}{5}\times 4
Apply the distributive property by multiplying each term of \frac{2}{5}\sqrt{13}-\frac{8}{5} by each term of \sqrt{13}+4.
\frac{2}{5}\times 13+\frac{2}{5}\sqrt{13}\times 4-\frac{8}{5}\sqrt{13}-\frac{8}{5}\times 4
Multiply \sqrt{13} and \sqrt{13} to get 13.
\frac{2\times 13}{5}+\frac{2}{5}\sqrt{13}\times 4-\frac{8}{5}\sqrt{13}-\frac{8}{5}\times 4
Express \frac{2}{5}\times 13 as a single fraction.
\frac{26}{5}+\frac{2}{5}\sqrt{13}\times 4-\frac{8}{5}\sqrt{13}-\frac{8}{5}\times 4
Multiply 2 and 13 to get 26.
\frac{26}{5}+\frac{2\times 4}{5}\sqrt{13}-\frac{8}{5}\sqrt{13}-\frac{8}{5}\times 4
Express \frac{2}{5}\times 4 as a single fraction.
\frac{26}{5}+\frac{8}{5}\sqrt{13}-\frac{8}{5}\sqrt{13}-\frac{8}{5}\times 4
Multiply 2 and 4 to get 8.
\frac{26}{5}-\frac{8}{5}\times 4
Combine \frac{8}{5}\sqrt{13} and -\frac{8}{5}\sqrt{13} to get 0.
\frac{26}{5}+\frac{-8\times 4}{5}
Express -\frac{8}{5}\times 4 as a single fraction.
\frac{26}{5}+\frac{-32}{5}
Multiply -8 and 4 to get -32.
\frac{26}{5}-\frac{32}{5}
Fraction \frac{-32}{5} can be rewritten as -\frac{32}{5} by extracting the negative sign.
\frac{26-32}{5}
Since \frac{26}{5} and \frac{32}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{6}{5}
Subtract 32 from 26 to get -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}