Evaluate
-\frac{277a}{60}-\frac{613b}{75}+4c
Expand
-\frac{277a}{60}-\frac{613b}{75}+4c
Share
Copied to clipboard
\frac{2}{5}\left(\frac{5a}{15}+\frac{3\times 2b}{15}\right)-\frac{5}{1}\left(\frac{3a}{4}+\frac{2b}{3}\right)-\left(a+5b-4c\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 5 is 15. Multiply \frac{a}{3} times \frac{5}{5}. Multiply \frac{2b}{5} times \frac{3}{3}.
\frac{2}{5}\times \frac{5a+3\times 2b}{15}-\frac{5}{1}\left(\frac{3a}{4}+\frac{2b}{3}\right)-\left(a+5b-4c\right)
Since \frac{5a}{15} and \frac{3\times 2b}{15} have the same denominator, add them by adding their numerators.
\frac{2}{5}\times \frac{5a+6b}{15}-\frac{5}{1}\left(\frac{3a}{4}+\frac{2b}{3}\right)-\left(a+5b-4c\right)
Do the multiplications in 5a+3\times 2b.
\frac{2\left(5a+6b\right)}{5\times 15}-\frac{5}{1}\left(\frac{3a}{4}+\frac{2b}{3}\right)-\left(a+5b-4c\right)
Multiply \frac{2}{5} times \frac{5a+6b}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(5a+6b\right)}{5\times 15}-5\left(\frac{3a}{4}+\frac{2b}{3}\right)-\left(a+5b-4c\right)
Anything divided by one gives itself.
\frac{2\left(5a+6b\right)}{5\times 15}-5\left(\frac{3\times 3a}{12}+\frac{4\times 2b}{12}\right)-\left(a+5b-4c\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 3 is 12. Multiply \frac{3a}{4} times \frac{3}{3}. Multiply \frac{2b}{3} times \frac{4}{4}.
\frac{2\left(5a+6b\right)}{5\times 15}-5\times \frac{3\times 3a+4\times 2b}{12}-\left(a+5b-4c\right)
Since \frac{3\times 3a}{12} and \frac{4\times 2b}{12} have the same denominator, add them by adding their numerators.
\frac{2\left(5a+6b\right)}{5\times 15}-5\times \frac{9a+8b}{12}-\left(a+5b-4c\right)
Do the multiplications in 3\times 3a+4\times 2b.
\frac{2\left(5a+6b\right)}{5\times 15}-\frac{5\left(9a+8b\right)}{12}-\left(a+5b-4c\right)
Express 5\times \frac{9a+8b}{12} as a single fraction.
\frac{4\times 2\left(5a+6b\right)}{300}-\frac{25\times 5\left(9a+8b\right)}{300}-\left(a+5b-4c\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5\times 15 and 12 is 300. Multiply \frac{2\left(5a+6b\right)}{5\times 15} times \frac{4}{4}. Multiply \frac{5\left(9a+8b\right)}{12} times \frac{25}{25}.
\frac{4\times 2\left(5a+6b\right)-25\times 5\left(9a+8b\right)}{300}-\left(a+5b-4c\right)
Since \frac{4\times 2\left(5a+6b\right)}{300} and \frac{25\times 5\left(9a+8b\right)}{300} have the same denominator, subtract them by subtracting their numerators.
\frac{40a+48b-1125a-1000b}{300}-\left(a+5b-4c\right)
Do the multiplications in 4\times 2\left(5a+6b\right)-25\times 5\left(9a+8b\right).
\frac{-1085a-952b}{300}-\left(a+5b-4c\right)
Combine like terms in 40a+48b-1125a-1000b.
\frac{-1085a-952b}{300}-a-5b-\left(-4c\right)
To find the opposite of a+5b-4c, find the opposite of each term.
\frac{-1085a-952b}{300}-a-5b+4c
The opposite of -4c is 4c.
\frac{-1085a-952b}{300}+\frac{300\left(-a-5b+4c\right)}{300}
To add or subtract expressions, expand them to make their denominators the same. Multiply -a-5b+4c times \frac{300}{300}.
\frac{-1085a-952b+300\left(-a-5b+4c\right)}{300}
Since \frac{-1085a-952b}{300} and \frac{300\left(-a-5b+4c\right)}{300} have the same denominator, add them by adding their numerators.
\frac{-1085a-952b-300a-1500b+1200c}{300}
Do the multiplications in -1085a-952b+300\left(-a-5b+4c\right).
\frac{-1385a-2452b+1200c}{300}
Combine like terms in -1085a-952b-300a-1500b+1200c.
\frac{2}{5}\left(\frac{5a}{15}+\frac{3\times 2b}{15}\right)-\frac{5}{1}\left(\frac{3a}{4}+\frac{2b}{3}\right)-\left(a+5b-4c\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 5 is 15. Multiply \frac{a}{3} times \frac{5}{5}. Multiply \frac{2b}{5} times \frac{3}{3}.
\frac{2}{5}\times \frac{5a+3\times 2b}{15}-\frac{5}{1}\left(\frac{3a}{4}+\frac{2b}{3}\right)-\left(a+5b-4c\right)
Since \frac{5a}{15} and \frac{3\times 2b}{15} have the same denominator, add them by adding their numerators.
\frac{2}{5}\times \frac{5a+6b}{15}-\frac{5}{1}\left(\frac{3a}{4}+\frac{2b}{3}\right)-\left(a+5b-4c\right)
Do the multiplications in 5a+3\times 2b.
\frac{2\left(5a+6b\right)}{5\times 15}-\frac{5}{1}\left(\frac{3a}{4}+\frac{2b}{3}\right)-\left(a+5b-4c\right)
Multiply \frac{2}{5} times \frac{5a+6b}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(5a+6b\right)}{5\times 15}-5\left(\frac{3a}{4}+\frac{2b}{3}\right)-\left(a+5b-4c\right)
Anything divided by one gives itself.
\frac{2\left(5a+6b\right)}{5\times 15}-5\left(\frac{3\times 3a}{12}+\frac{4\times 2b}{12}\right)-\left(a+5b-4c\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 3 is 12. Multiply \frac{3a}{4} times \frac{3}{3}. Multiply \frac{2b}{3} times \frac{4}{4}.
\frac{2\left(5a+6b\right)}{5\times 15}-5\times \frac{3\times 3a+4\times 2b}{12}-\left(a+5b-4c\right)
Since \frac{3\times 3a}{12} and \frac{4\times 2b}{12} have the same denominator, add them by adding their numerators.
\frac{2\left(5a+6b\right)}{5\times 15}-5\times \frac{9a+8b}{12}-\left(a+5b-4c\right)
Do the multiplications in 3\times 3a+4\times 2b.
\frac{2\left(5a+6b\right)}{5\times 15}-\frac{5\left(9a+8b\right)}{12}-\left(a+5b-4c\right)
Express 5\times \frac{9a+8b}{12} as a single fraction.
\frac{4\times 2\left(5a+6b\right)}{300}-\frac{25\times 5\left(9a+8b\right)}{300}-\left(a+5b-4c\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5\times 15 and 12 is 300. Multiply \frac{2\left(5a+6b\right)}{5\times 15} times \frac{4}{4}. Multiply \frac{5\left(9a+8b\right)}{12} times \frac{25}{25}.
\frac{4\times 2\left(5a+6b\right)-25\times 5\left(9a+8b\right)}{300}-\left(a+5b-4c\right)
Since \frac{4\times 2\left(5a+6b\right)}{300} and \frac{25\times 5\left(9a+8b\right)}{300} have the same denominator, subtract them by subtracting their numerators.
\frac{40a+48b-1125a-1000b}{300}-\left(a+5b-4c\right)
Do the multiplications in 4\times 2\left(5a+6b\right)-25\times 5\left(9a+8b\right).
\frac{-1085a-952b}{300}-\left(a+5b-4c\right)
Combine like terms in 40a+48b-1125a-1000b.
\frac{-1085a-952b}{300}-a-5b-\left(-4c\right)
To find the opposite of a+5b-4c, find the opposite of each term.
\frac{-1085a-952b}{300}-a-5b+4c
The opposite of -4c is 4c.
\frac{-1085a-952b}{300}+\frac{300\left(-a-5b+4c\right)}{300}
To add or subtract expressions, expand them to make their denominators the same. Multiply -a-5b+4c times \frac{300}{300}.
\frac{-1085a-952b+300\left(-a-5b+4c\right)}{300}
Since \frac{-1085a-952b}{300} and \frac{300\left(-a-5b+4c\right)}{300} have the same denominator, add them by adding their numerators.
\frac{-1085a-952b-300a-1500b+1200c}{300}
Do the multiplications in -1085a-952b+300\left(-a-5b+4c\right).
\frac{-1385a-2452b+1200c}{300}
Combine like terms in -1085a-952b-300a-1500b+1200c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}