Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{5}\times 2\sqrt{5}-\frac{3}{6}\sqrt{80}+\frac{1}{8}\sqrt{180}+6\sqrt{4}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{2\times 2}{5}\sqrt{5}-\frac{3}{6}\sqrt{80}+\frac{1}{8}\sqrt{180}+6\sqrt{4}
Express \frac{2}{5}\times 2 as a single fraction.
\frac{4}{5}\sqrt{5}-\frac{3}{6}\sqrt{80}+\frac{1}{8}\sqrt{180}+6\sqrt{4}
Multiply 2 and 2 to get 4.
\frac{4}{5}\sqrt{5}-\frac{1}{2}\sqrt{80}+\frac{1}{8}\sqrt{180}+6\sqrt{4}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{4}{5}\sqrt{5}-\frac{1}{2}\times 4\sqrt{5}+\frac{1}{8}\sqrt{180}+6\sqrt{4}
Factor 80=4^{2}\times 5. Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.
\frac{4}{5}\sqrt{5}-\frac{4}{2}\sqrt{5}+\frac{1}{8}\sqrt{180}+6\sqrt{4}
Multiply \frac{1}{2} and 4 to get \frac{4}{2}.
\frac{4}{5}\sqrt{5}-2\sqrt{5}+\frac{1}{8}\sqrt{180}+6\sqrt{4}
Divide 4 by 2 to get 2.
-\frac{6}{5}\sqrt{5}+\frac{1}{8}\sqrt{180}+6\sqrt{4}
Combine \frac{4}{5}\sqrt{5} and -2\sqrt{5} to get -\frac{6}{5}\sqrt{5}.
-\frac{6}{5}\sqrt{5}+\frac{1}{8}\times 6\sqrt{5}+6\sqrt{4}
Factor 180=6^{2}\times 5. Rewrite the square root of the product \sqrt{6^{2}\times 5} as the product of square roots \sqrt{6^{2}}\sqrt{5}. Take the square root of 6^{2}.
-\frac{6}{5}\sqrt{5}+\frac{6}{8}\sqrt{5}+6\sqrt{4}
Multiply \frac{1}{8} and 6 to get \frac{6}{8}.
-\frac{6}{5}\sqrt{5}+\frac{3}{4}\sqrt{5}+6\sqrt{4}
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
-\frac{9}{20}\sqrt{5}+6\sqrt{4}
Combine -\frac{6}{5}\sqrt{5} and \frac{3}{4}\sqrt{5} to get -\frac{9}{20}\sqrt{5}.
-\frac{9}{20}\sqrt{5}+6\times 2
Calculate the square root of 4 and get 2.
-\frac{9}{20}\sqrt{5}+12
Multiply 6 and 2 to get 12.