Evaluate
\frac{4}{5}=0.8
Factor
\frac{2 ^ {2}}{5} = 0.8
Share
Copied to clipboard
\frac{\frac{2}{5}}{\frac{5}{11}\left(\frac{9}{10}+\frac{2}{10}\right)}
Least common multiple of 10 and 5 is 10. Convert \frac{9}{10} and \frac{1}{5} to fractions with denominator 10.
\frac{\frac{2}{5}}{\frac{5}{11}\times \frac{9+2}{10}}
Since \frac{9}{10} and \frac{2}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{2}{5}}{\frac{5}{11}\times \frac{11}{10}}
Add 9 and 2 to get 11.
\frac{\frac{2}{5}}{\frac{5\times 11}{11\times 10}}
Multiply \frac{5}{11} times \frac{11}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{2}{5}}{\frac{5}{10}}
Cancel out 11 in both numerator and denominator.
\frac{\frac{2}{5}}{\frac{1}{2}}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{2}{5}\times 2
Divide \frac{2}{5} by \frac{1}{2} by multiplying \frac{2}{5} by the reciprocal of \frac{1}{2}.
\frac{2\times 2}{5}
Express \frac{2}{5}\times 2 as a single fraction.
\frac{4}{5}
Multiply 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}