Verify
false
Share
Copied to clipboard
\frac{2}{5}=\frac{2}{10}-\frac{7}{10}+\frac{1}{4}-\frac{1}{2}
Least common multiple of 5 and 10 is 10. Convert \frac{1}{5} and \frac{7}{10} to fractions with denominator 10.
\frac{2}{5}=\frac{2-7}{10}+\frac{1}{4}-\frac{1}{2}
Since \frac{2}{10} and \frac{7}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{5}=\frac{-5}{10}+\frac{1}{4}-\frac{1}{2}
Subtract 7 from 2 to get -5.
\frac{2}{5}=-\frac{1}{2}+\frac{1}{4}-\frac{1}{2}
Reduce the fraction \frac{-5}{10} to lowest terms by extracting and canceling out 5.
\frac{2}{5}=-\frac{2}{4}+\frac{1}{4}-\frac{1}{2}
Least common multiple of 2 and 4 is 4. Convert -\frac{1}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{2}{5}=\frac{-2+1}{4}-\frac{1}{2}
Since -\frac{2}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{2}{5}=-\frac{1}{4}-\frac{1}{2}
Add -2 and 1 to get -1.
\frac{2}{5}=-\frac{1}{4}-\frac{2}{4}
Least common multiple of 4 and 2 is 4. Convert -\frac{1}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{2}{5}=\frac{-1-2}{4}
Since -\frac{1}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{5}=-\frac{3}{4}
Subtract 2 from -1 to get -3.
\frac{8}{20}=-\frac{15}{20}
Least common multiple of 5 and 4 is 20. Convert \frac{2}{5} and -\frac{3}{4} to fractions with denominator 20.
\text{false}
Compare \frac{8}{20} and -\frac{15}{20}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}