Verify
false
Share
Copied to clipboard
\frac{2}{5}=\frac{9}{12}+\frac{8}{12}-\frac{1}{5}
Least common multiple of 4 and 3 is 12. Convert \frac{3}{4} and \frac{2}{3} to fractions with denominator 12.
\frac{2}{5}=\frac{9+8}{12}-\frac{1}{5}
Since \frac{9}{12} and \frac{8}{12} have the same denominator, add them by adding their numerators.
\frac{2}{5}=\frac{17}{12}-\frac{1}{5}
Add 9 and 8 to get 17.
\frac{2}{5}=\frac{85}{60}-\frac{12}{60}
Least common multiple of 12 and 5 is 60. Convert \frac{17}{12} and \frac{1}{5} to fractions with denominator 60.
\frac{2}{5}=\frac{85-12}{60}
Since \frac{85}{60} and \frac{12}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{5}=\frac{73}{60}
Subtract 12 from 85 to get 73.
\frac{24}{60}=\frac{73}{60}
Least common multiple of 5 and 60 is 60. Convert \frac{2}{5} and \frac{73}{60} to fractions with denominator 60.
\text{false}
Compare \frac{24}{60} and \frac{73}{60}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}