Evaluate
\frac{91}{80}=1.1375
Factor
\frac{7 \cdot 13}{2 ^ {4} \cdot 5} = 1\frac{11}{80} = 1.1375
Share
Copied to clipboard
\frac{2}{5}+\frac{4\times 3}{3\times 5}-\left(\frac{1}{4}\right)^{2}
Multiply \frac{4}{3} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{5}+\frac{4}{5}-\left(\frac{1}{4}\right)^{2}
Cancel out 3 in both numerator and denominator.
\frac{2+4}{5}-\left(\frac{1}{4}\right)^{2}
Since \frac{2}{5} and \frac{4}{5} have the same denominator, add them by adding their numerators.
\frac{6}{5}-\left(\frac{1}{4}\right)^{2}
Add 2 and 4 to get 6.
\frac{6}{5}-\frac{1}{16}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{96}{80}-\frac{5}{80}
Least common multiple of 5 and 16 is 80. Convert \frac{6}{5} and \frac{1}{16} to fractions with denominator 80.
\frac{96-5}{80}
Since \frac{96}{80} and \frac{5}{80} have the same denominator, subtract them by subtracting their numerators.
\frac{91}{80}
Subtract 5 from 96 to get 91.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}