Evaluate
-\frac{2}{5}=-0.4
Factor
-\frac{2}{5} = -0.4
Share
Copied to clipboard
\frac{2}{5}+\frac{1}{6}\left(-\frac{9}{5}\right)-\frac{1}{2}
Divide \frac{1}{6} by -\frac{5}{9} by multiplying \frac{1}{6} by the reciprocal of -\frac{5}{9}.
\frac{2}{5}+\frac{1\left(-9\right)}{6\times 5}-\frac{1}{2}
Multiply \frac{1}{6} times -\frac{9}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{5}+\frac{-9}{30}-\frac{1}{2}
Do the multiplications in the fraction \frac{1\left(-9\right)}{6\times 5}.
\frac{2}{5}-\frac{3}{10}-\frac{1}{2}
Reduce the fraction \frac{-9}{30} to lowest terms by extracting and canceling out 3.
\frac{4}{10}-\frac{3}{10}-\frac{1}{2}
Least common multiple of 5 and 10 is 10. Convert \frac{2}{5} and \frac{3}{10} to fractions with denominator 10.
\frac{4-3}{10}-\frac{1}{2}
Since \frac{4}{10} and \frac{3}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{10}-\frac{1}{2}
Subtract 3 from 4 to get 1.
\frac{1}{10}-\frac{5}{10}
Least common multiple of 10 and 2 is 10. Convert \frac{1}{10} and \frac{1}{2} to fractions with denominator 10.
\frac{1-5}{10}
Since \frac{1}{10} and \frac{5}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{-4}{10}
Subtract 5 from 1 to get -4.
-\frac{2}{5}
Reduce the fraction \frac{-4}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}