Evaluate
\frac{\sqrt{3}\left(3\sqrt{5}-5\right)}{30}\approx 0.0986232
Share
Copied to clipboard
\frac{2\left(5\sqrt{3}-3\sqrt{15}\right)}{\left(5\sqrt{3}+3\sqrt{15}\right)\left(5\sqrt{3}-3\sqrt{15}\right)}
Rationalize the denominator of \frac{2}{5\sqrt{3}+3\sqrt{15}} by multiplying numerator and denominator by 5\sqrt{3}-3\sqrt{15}.
\frac{2\left(5\sqrt{3}-3\sqrt{15}\right)}{\left(5\sqrt{3}\right)^{2}-\left(3\sqrt{15}\right)^{2}}
Consider \left(5\sqrt{3}+3\sqrt{15}\right)\left(5\sqrt{3}-3\sqrt{15}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(5\sqrt{3}-3\sqrt{15}\right)}{5^{2}\left(\sqrt{3}\right)^{2}-\left(3\sqrt{15}\right)^{2}}
Expand \left(5\sqrt{3}\right)^{2}.
\frac{2\left(5\sqrt{3}-3\sqrt{15}\right)}{25\left(\sqrt{3}\right)^{2}-\left(3\sqrt{15}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{2\left(5\sqrt{3}-3\sqrt{15}\right)}{25\times 3-\left(3\sqrt{15}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{2\left(5\sqrt{3}-3\sqrt{15}\right)}{75-\left(3\sqrt{15}\right)^{2}}
Multiply 25 and 3 to get 75.
\frac{2\left(5\sqrt{3}-3\sqrt{15}\right)}{75-3^{2}\left(\sqrt{15}\right)^{2}}
Expand \left(3\sqrt{15}\right)^{2}.
\frac{2\left(5\sqrt{3}-3\sqrt{15}\right)}{75-9\left(\sqrt{15}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{2\left(5\sqrt{3}-3\sqrt{15}\right)}{75-9\times 15}
The square of \sqrt{15} is 15.
\frac{2\left(5\sqrt{3}-3\sqrt{15}\right)}{75-135}
Multiply 9 and 15 to get 135.
\frac{2\left(5\sqrt{3}-3\sqrt{15}\right)}{-60}
Subtract 135 from 75 to get -60.
-\frac{1}{30}\left(5\sqrt{3}-3\sqrt{15}\right)
Divide 2\left(5\sqrt{3}-3\sqrt{15}\right) by -60 to get -\frac{1}{30}\left(5\sqrt{3}-3\sqrt{15}\right).
-\frac{1}{30}\times 5\sqrt{3}-\frac{1}{30}\left(-3\right)\sqrt{15}
Use the distributive property to multiply -\frac{1}{30} by 5\sqrt{3}-3\sqrt{15}.
\frac{-5}{30}\sqrt{3}-\frac{1}{30}\left(-3\right)\sqrt{15}
Express -\frac{1}{30}\times 5 as a single fraction.
-\frac{1}{6}\sqrt{3}-\frac{1}{30}\left(-3\right)\sqrt{15}
Reduce the fraction \frac{-5}{30} to lowest terms by extracting and canceling out 5.
-\frac{1}{6}\sqrt{3}+\frac{-\left(-3\right)}{30}\sqrt{15}
Express -\frac{1}{30}\left(-3\right) as a single fraction.
-\frac{1}{6}\sqrt{3}+\frac{3}{30}\sqrt{15}
Multiply -1 and -3 to get 3.
-\frac{1}{6}\sqrt{3}+\frac{1}{10}\sqrt{15}
Reduce the fraction \frac{3}{30} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}