Solve for a
a=3
Share
Copied to clipboard
\left(a-8\right)\times 2=2-4a
Variable a cannot be equal to any of the values \frac{1}{2},8 since division by zero is not defined. Multiply both sides of the equation by 2\left(a-8\right)\left(2a-1\right), the least common multiple of 4a-2,8-a.
2a-16=2-4a
Use the distributive property to multiply a-8 by 2.
2a-16+4a=2
Add 4a to both sides.
6a-16=2
Combine 2a and 4a to get 6a.
6a=2+16
Add 16 to both sides.
6a=18
Add 2 and 16 to get 18.
a=\frac{18}{6}
Divide both sides by 6.
a=3
Divide 18 by 6 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}