Evaluate
\frac{1}{18}\approx 0.055555556
Factor
\frac{1}{2 \cdot 3 ^ {2}} = 0.05555555555555555
Share
Copied to clipboard
\frac{1}{2}+\frac{5}{9}\times \frac{3}{5}\times \frac{-4}{3}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{2}+\frac{5\times 3}{9\times 5}\times \frac{-4}{3}
Multiply \frac{5}{9} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}+\frac{3}{9}\times \frac{-4}{3}
Cancel out 5 in both numerator and denominator.
\frac{1}{2}+\frac{1}{3}\times \frac{-4}{3}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{1}{2}+\frac{1}{3}\left(-\frac{4}{3}\right)
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
\frac{1}{2}+\frac{1\left(-4\right)}{3\times 3}
Multiply \frac{1}{3} times -\frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}+\frac{-4}{9}
Do the multiplications in the fraction \frac{1\left(-4\right)}{3\times 3}.
\frac{1}{2}-\frac{4}{9}
Fraction \frac{-4}{9} can be rewritten as -\frac{4}{9} by extracting the negative sign.
\frac{9}{18}-\frac{8}{18}
Least common multiple of 2 and 9 is 18. Convert \frac{1}{2} and \frac{4}{9} to fractions with denominator 18.
\frac{9-8}{18}
Since \frac{9}{18} and \frac{8}{18} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{18}
Subtract 8 from 9 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}