Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\left(4-\sqrt{35}\right)}{\left(4+\sqrt{35}\right)\left(4-\sqrt{35}\right)}
Rationalize the denominator of \frac{2}{4+\sqrt{35}} by multiplying numerator and denominator by 4-\sqrt{35}.
\frac{2\left(4-\sqrt{35}\right)}{4^{2}-\left(\sqrt{35}\right)^{2}}
Consider \left(4+\sqrt{35}\right)\left(4-\sqrt{35}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(4-\sqrt{35}\right)}{16-35}
Square 4. Square \sqrt{35}.
\frac{2\left(4-\sqrt{35}\right)}{-19}
Subtract 35 from 16 to get -19.
\frac{8-2\sqrt{35}}{-19}
Use the distributive property to multiply 2 by 4-\sqrt{35}.