Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{\left(x+3\right)\left(3x+7\right)}+\frac{1}{\left(x+2\right)\left(3x+7\right)}
Factor 3x^{2}+16x+21. Factor 3x^{2}+13x+14.
\frac{2\left(x+2\right)}{\left(x+2\right)\left(x+3\right)\left(3x+7\right)}+\frac{x+3}{\left(x+2\right)\left(x+3\right)\left(3x+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)\left(3x+7\right) and \left(x+2\right)\left(3x+7\right) is \left(x+2\right)\left(x+3\right)\left(3x+7\right). Multiply \frac{2}{\left(x+3\right)\left(3x+7\right)} times \frac{x+2}{x+2}. Multiply \frac{1}{\left(x+2\right)\left(3x+7\right)} times \frac{x+3}{x+3}.
\frac{2\left(x+2\right)+x+3}{\left(x+2\right)\left(x+3\right)\left(3x+7\right)}
Since \frac{2\left(x+2\right)}{\left(x+2\right)\left(x+3\right)\left(3x+7\right)} and \frac{x+3}{\left(x+2\right)\left(x+3\right)\left(3x+7\right)} have the same denominator, add them by adding their numerators.
\frac{2x+4+x+3}{\left(x+2\right)\left(x+3\right)\left(3x+7\right)}
Do the multiplications in 2\left(x+2\right)+x+3.
\frac{3x+7}{\left(x+2\right)\left(x+3\right)\left(3x+7\right)}
Combine like terms in 2x+4+x+3.
\frac{1}{\left(x+2\right)\left(x+3\right)}
Cancel out 3x+7 in both numerator and denominator.
\frac{1}{x^{2}+5x+6}
Expand \left(x+2\right)\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{\left(x+3\right)\left(3x+7\right)}+\frac{1}{\left(x+2\right)\left(3x+7\right)})
Factor 3x^{2}+16x+21. Factor 3x^{2}+13x+14.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+2\right)}{\left(x+2\right)\left(x+3\right)\left(3x+7\right)}+\frac{x+3}{\left(x+2\right)\left(x+3\right)\left(3x+7\right)})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+3\right)\left(3x+7\right) and \left(x+2\right)\left(3x+7\right) is \left(x+2\right)\left(x+3\right)\left(3x+7\right). Multiply \frac{2}{\left(x+3\right)\left(3x+7\right)} times \frac{x+2}{x+2}. Multiply \frac{1}{\left(x+2\right)\left(3x+7\right)} times \frac{x+3}{x+3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+2\right)+x+3}{\left(x+2\right)\left(x+3\right)\left(3x+7\right)})
Since \frac{2\left(x+2\right)}{\left(x+2\right)\left(x+3\right)\left(3x+7\right)} and \frac{x+3}{\left(x+2\right)\left(x+3\right)\left(3x+7\right)} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+4+x+3}{\left(x+2\right)\left(x+3\right)\left(3x+7\right)})
Do the multiplications in 2\left(x+2\right)+x+3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x+7}{\left(x+2\right)\left(x+3\right)\left(3x+7\right)})
Combine like terms in 2x+4+x+3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(x+2\right)\left(x+3\right)})
Cancel out 3x+7 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{2}+5x+6})
Use the distributive property to multiply x+2 by x+3 and combine like terms.
-\left(x^{2}+5x^{1}+6\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+5x^{1}+6)
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{2}+5x^{1}+6\right)^{-2}\left(2x^{2-1}+5x^{1-1}\right)
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(x^{2}+5x^{1}+6\right)^{-2}\left(-2x^{1}-5x^{0}\right)
Simplify.
\left(x^{2}+5x+6\right)^{-2}\left(-2x-5x^{0}\right)
For any term t, t^{1}=t.
\left(x^{2}+5x+6\right)^{-2}\left(-2x-5\right)
For any term t except 0, t^{0}=1.