Solve for x
x=-\frac{5}{6}\approx -0.833333333
Graph
Share
Copied to clipboard
3\times 2+3\left(3x+1\right)\times 2=2\left(3x+1\right)
Variable x cannot be equal to -\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by 3\left(3x+1\right), the least common multiple of 3x+1,3.
6+3\left(3x+1\right)\times 2=2\left(3x+1\right)
Multiply 3 and 2 to get 6.
6+6\left(3x+1\right)=2\left(3x+1\right)
Multiply 3 and 2 to get 6.
6+18x+6=2\left(3x+1\right)
Use the distributive property to multiply 6 by 3x+1.
12+18x=2\left(3x+1\right)
Add 6 and 6 to get 12.
12+18x=6x+2
Use the distributive property to multiply 2 by 3x+1.
12+18x-6x=2
Subtract 6x from both sides.
12+12x=2
Combine 18x and -6x to get 12x.
12x=2-12
Subtract 12 from both sides.
12x=-10
Subtract 12 from 2 to get -10.
x=\frac{-10}{12}
Divide both sides by 12.
x=-\frac{5}{6}
Reduce the fraction \frac{-10}{12} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}