Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2i}{-3}+\frac{1}{1-i}
Multiply both numerator and denominator of \frac{2}{3i} by imaginary unit i.
-\frac{2}{3}i+\frac{1}{1-i}
Divide 2i by -3 to get -\frac{2}{3}i.
-\frac{2}{3}i+\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator of \frac{1}{1-i} by the complex conjugate of the denominator, 1+i.
-\frac{2}{3}i+\frac{1+i}{2}
Do the multiplications in \frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
-\frac{2}{3}i+\left(\frac{1}{2}+\frac{1}{2}i\right)
Divide 1+i by 2 to get \frac{1}{2}+\frac{1}{2}i.
\frac{1}{2}-\frac{1}{6}i
Add -\frac{2}{3}i and \frac{1}{2}+\frac{1}{2}i to get \frac{1}{2}-\frac{1}{6}i.
Re(\frac{2i}{-3}+\frac{1}{1-i})
Multiply both numerator and denominator of \frac{2}{3i} by imaginary unit i.
Re(-\frac{2}{3}i+\frac{1}{1-i})
Divide 2i by -3 to get -\frac{2}{3}i.
Re(-\frac{2}{3}i+\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
Multiply both numerator and denominator of \frac{1}{1-i} by the complex conjugate of the denominator, 1+i.
Re(-\frac{2}{3}i+\frac{1+i}{2})
Do the multiplications in \frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(-\frac{2}{3}i+\left(\frac{1}{2}+\frac{1}{2}i\right))
Divide 1+i by 2 to get \frac{1}{2}+\frac{1}{2}i.
Re(\frac{1}{2}-\frac{1}{6}i)
Add -\frac{2}{3}i and \frac{1}{2}+\frac{1}{2}i to get \frac{1}{2}-\frac{1}{6}i.
\frac{1}{2}
The real part of \frac{1}{2}-\frac{1}{6}i is \frac{1}{2}.