Evaluate
\frac{\sqrt{3}}{3}+\sqrt{7}+2\approx 5.22310158
Factor
\frac{\sqrt{3} + 3 \sqrt{7} + 6}{3} = 5.223101580254217
Quiz
Arithmetic
5 problems similar to:
\frac { 2 } { 3 - \sqrt { 7 } } - \frac { 2 } { 3 + \sqrt { 3 } }
Share
Copied to clipboard
\frac{2\left(3+\sqrt{7}\right)}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}-\frac{2}{3+\sqrt{3}}
Rationalize the denominator of \frac{2}{3-\sqrt{7}} by multiplying numerator and denominator by 3+\sqrt{7}.
\frac{2\left(3+\sqrt{7}\right)}{3^{2}-\left(\sqrt{7}\right)^{2}}-\frac{2}{3+\sqrt{3}}
Consider \left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(3+\sqrt{7}\right)}{9-7}-\frac{2}{3+\sqrt{3}}
Square 3. Square \sqrt{7}.
\frac{2\left(3+\sqrt{7}\right)}{2}-\frac{2}{3+\sqrt{3}}
Subtract 7 from 9 to get 2.
3+\sqrt{7}-\frac{2}{3+\sqrt{3}}
Cancel out 2 and 2.
3+\sqrt{7}-\frac{2\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}
Rationalize the denominator of \frac{2}{3+\sqrt{3}} by multiplying numerator and denominator by 3-\sqrt{3}.
3+\sqrt{7}-\frac{2\left(3-\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3+\sqrt{7}-\frac{2\left(3-\sqrt{3}\right)}{9-3}
Square 3. Square \sqrt{3}.
3+\sqrt{7}-\frac{2\left(3-\sqrt{3}\right)}{6}
Subtract 3 from 9 to get 6.
3+\sqrt{7}-\frac{1}{3}\left(3-\sqrt{3}\right)
Divide 2\left(3-\sqrt{3}\right) by 6 to get \frac{1}{3}\left(3-\sqrt{3}\right).
3+\sqrt{7}-\left(\frac{1}{3}\times 3+\frac{1}{3}\left(-1\right)\sqrt{3}\right)
Use the distributive property to multiply \frac{1}{3} by 3-\sqrt{3}.
3+\sqrt{7}-\left(1+\frac{1}{3}\left(-1\right)\sqrt{3}\right)
Cancel out 3 and 3.
3+\sqrt{7}-\left(1-\frac{1}{3}\sqrt{3}\right)
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
3+\sqrt{7}-1-\left(-\frac{1}{3}\sqrt{3}\right)
To find the opposite of 1-\frac{1}{3}\sqrt{3}, find the opposite of each term.
3+\sqrt{7}-1+\frac{1}{3}\sqrt{3}
The opposite of -\frac{1}{3}\sqrt{3} is \frac{1}{3}\sqrt{3}.
2+\sqrt{7}+\frac{1}{3}\sqrt{3}
Subtract 1 from 3 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}