Solve for x
x=\frac{9y}{8}+3
Solve for y
y=\frac{8\left(x-3\right)}{9}
Graph
Share
Copied to clipboard
\frac{2}{3}x=2+\frac{3}{4}y
Add \frac{3}{4}y to both sides.
\frac{2}{3}x=\frac{3y}{4}+2
The equation is in standard form.
\frac{\frac{2}{3}x}{\frac{2}{3}}=\frac{\frac{3y}{4}+2}{\frac{2}{3}}
Divide both sides of the equation by \frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{\frac{3y}{4}+2}{\frac{2}{3}}
Dividing by \frac{2}{3} undoes the multiplication by \frac{2}{3}.
x=\frac{9y}{8}+3
Divide 2+\frac{3y}{4} by \frac{2}{3} by multiplying 2+\frac{3y}{4} by the reciprocal of \frac{2}{3}.
-\frac{3}{4}y=2-\frac{2}{3}x
Subtract \frac{2}{3}x from both sides.
-\frac{3}{4}y=-\frac{2x}{3}+2
The equation is in standard form.
\frac{-\frac{3}{4}y}{-\frac{3}{4}}=\frac{-\frac{2x}{3}+2}{-\frac{3}{4}}
Divide both sides of the equation by -\frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{2x}{3}+2}{-\frac{3}{4}}
Dividing by -\frac{3}{4} undoes the multiplication by -\frac{3}{4}.
y=\frac{8x}{9}-\frac{8}{3}
Divide 2-\frac{2x}{3} by -\frac{3}{4} by multiplying 2-\frac{2x}{3} by the reciprocal of -\frac{3}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}