Solve for x
x = -\frac{366}{7} = -52\frac{2}{7} \approx -52.285714286
Graph
Share
Copied to clipboard
\frac{2}{3}x-\frac{1}{2}-\frac{5}{4}x=30
Subtract \frac{5}{4}x from both sides.
-\frac{7}{12}x-\frac{1}{2}=30
Combine \frac{2}{3}x and -\frac{5}{4}x to get -\frac{7}{12}x.
-\frac{7}{12}x=30+\frac{1}{2}
Add \frac{1}{2} to both sides.
-\frac{7}{12}x=\frac{60}{2}+\frac{1}{2}
Convert 30 to fraction \frac{60}{2}.
-\frac{7}{12}x=\frac{60+1}{2}
Since \frac{60}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
-\frac{7}{12}x=\frac{61}{2}
Add 60 and 1 to get 61.
x=\frac{61}{2}\left(-\frac{12}{7}\right)
Multiply both sides by -\frac{12}{7}, the reciprocal of -\frac{7}{12}.
x=\frac{61\left(-12\right)}{2\times 7}
Multiply \frac{61}{2} times -\frac{12}{7} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-732}{14}
Do the multiplications in the fraction \frac{61\left(-12\right)}{2\times 7}.
x=-\frac{366}{7}
Reduce the fraction \frac{-732}{14} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}