Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{6}xa-x^{2}-\frac{5}{7}a\left(\frac{2}{10}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
Use the distributive property to multiply \frac{2}{3}x by \frac{1}{4}a-\frac{3}{2}x.
\frac{1}{6}xa-x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{6}xa-x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Use the distributive property to multiply -\frac{10}{9} by -\frac{9}{20}x^{2}+\frac{3}{2}a^{2}.
\frac{1}{6}xa-x^{2}-\frac{1}{7}ax+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Use the distributive property to multiply -\frac{5}{7}a by \frac{1}{5}x-\frac{7}{3}a.
\frac{1}{42}xa-x^{2}+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Combine \frac{1}{6}xa and -\frac{1}{7}ax to get \frac{1}{42}xa.
\frac{1}{42}xa-\frac{1}{2}x^{2}+\frac{5}{3}a^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Combine -x^{2} and \frac{1}{2}x^{2} to get -\frac{1}{2}x^{2}.
\frac{1}{42}xa-\frac{1}{2}x^{2}+\frac{5}{42}ax
Combine \frac{5}{3}a^{2} and -\frac{5}{3}a^{2} to get 0.
\frac{1}{7}xa-\frac{1}{2}x^{2}
Combine \frac{1}{42}xa and \frac{5}{42}ax to get \frac{1}{7}xa.
\frac{1}{6}xa-x^{2}-\frac{5}{7}a\left(\frac{2}{10}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
Use the distributive property to multiply \frac{2}{3}x by \frac{1}{4}a-\frac{3}{2}x.
\frac{1}{6}xa-x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)-\frac{10}{9}\left(-\frac{9}{20}x^{2}+\frac{3}{2}a^{2}\right)+\frac{5}{42}ax
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{1}{6}xa-x^{2}-\frac{5}{7}a\left(\frac{1}{5}x-\frac{7}{3}a\right)+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Use the distributive property to multiply -\frac{10}{9} by -\frac{9}{20}x^{2}+\frac{3}{2}a^{2}.
\frac{1}{6}xa-x^{2}-\frac{1}{7}ax+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Use the distributive property to multiply -\frac{5}{7}a by \frac{1}{5}x-\frac{7}{3}a.
\frac{1}{42}xa-x^{2}+\frac{5}{3}a^{2}+\frac{1}{2}x^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Combine \frac{1}{6}xa and -\frac{1}{7}ax to get \frac{1}{42}xa.
\frac{1}{42}xa-\frac{1}{2}x^{2}+\frac{5}{3}a^{2}-\frac{5}{3}a^{2}+\frac{5}{42}ax
Combine -x^{2} and \frac{1}{2}x^{2} to get -\frac{1}{2}x^{2}.
\frac{1}{42}xa-\frac{1}{2}x^{2}+\frac{5}{42}ax
Combine \frac{5}{3}a^{2} and -\frac{5}{3}a^{2} to get 0.
\frac{1}{7}xa-\frac{1}{2}x^{2}
Combine \frac{1}{42}xa and \frac{5}{42}ax to get \frac{1}{7}xa.