Solve for x
x=\frac{\sqrt{15}-3}{2}\approx 0.436491673
x=\frac{-\sqrt{15}-3}{2}\approx -3.436491673
Graph
Share
Copied to clipboard
\frac{2}{3}x^{2}+2x=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{2}{3}x^{2}+2x-1=1-1
Subtract 1 from both sides of the equation.
\frac{2}{3}x^{2}+2x-1=0
Subtracting 1 from itself leaves 0.
x=\frac{-2±\sqrt{2^{2}-4\times \frac{2}{3}\left(-1\right)}}{2\times \frac{2}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{2}{3} for a, 2 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times \frac{2}{3}\left(-1\right)}}{2\times \frac{2}{3}}
Square 2.
x=\frac{-2±\sqrt{4-\frac{8}{3}\left(-1\right)}}{2\times \frac{2}{3}}
Multiply -4 times \frac{2}{3}.
x=\frac{-2±\sqrt{4+\frac{8}{3}}}{2\times \frac{2}{3}}
Multiply -\frac{8}{3} times -1.
x=\frac{-2±\sqrt{\frac{20}{3}}}{2\times \frac{2}{3}}
Add 4 to \frac{8}{3}.
x=\frac{-2±\frac{2\sqrt{15}}{3}}{2\times \frac{2}{3}}
Take the square root of \frac{20}{3}.
x=\frac{-2±\frac{2\sqrt{15}}{3}}{\frac{4}{3}}
Multiply 2 times \frac{2}{3}.
x=\frac{\frac{2\sqrt{15}}{3}-2}{\frac{4}{3}}
Now solve the equation x=\frac{-2±\frac{2\sqrt{15}}{3}}{\frac{4}{3}} when ± is plus. Add -2 to \frac{2\sqrt{15}}{3}.
x=\frac{\sqrt{15}-3}{2}
Divide -2+\frac{2\sqrt{15}}{3} by \frac{4}{3} by multiplying -2+\frac{2\sqrt{15}}{3} by the reciprocal of \frac{4}{3}.
x=\frac{-\frac{2\sqrt{15}}{3}-2}{\frac{4}{3}}
Now solve the equation x=\frac{-2±\frac{2\sqrt{15}}{3}}{\frac{4}{3}} when ± is minus. Subtract \frac{2\sqrt{15}}{3} from -2.
x=\frac{-\sqrt{15}-3}{2}
Divide -2-\frac{2\sqrt{15}}{3} by \frac{4}{3} by multiplying -2-\frac{2\sqrt{15}}{3} by the reciprocal of \frac{4}{3}.
x=\frac{\sqrt{15}-3}{2} x=\frac{-\sqrt{15}-3}{2}
The equation is now solved.
\frac{2}{3}x^{2}+2x=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{2}{3}x^{2}+2x}{\frac{2}{3}}=\frac{1}{\frac{2}{3}}
Divide both sides of the equation by \frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{2}{\frac{2}{3}}x=\frac{1}{\frac{2}{3}}
Dividing by \frac{2}{3} undoes the multiplication by \frac{2}{3}.
x^{2}+3x=\frac{1}{\frac{2}{3}}
Divide 2 by \frac{2}{3} by multiplying 2 by the reciprocal of \frac{2}{3}.
x^{2}+3x=\frac{3}{2}
Divide 1 by \frac{2}{3} by multiplying 1 by the reciprocal of \frac{2}{3}.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{3}{2}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=\frac{3}{2}+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{15}{4}
Add \frac{3}{2} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=\frac{15}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{15}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{15}}{2} x+\frac{3}{2}=-\frac{\sqrt{15}}{2}
Simplify.
x=\frac{\sqrt{15}-3}{2} x=\frac{-\sqrt{15}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}