Solve for x
x = \frac{17}{5} = 3\frac{2}{5} = 3.4
Graph
Share
Copied to clipboard
\frac{2}{3}x+\frac{4}{5}-x=-\frac{1}{3}
Subtract x from both sides.
-\frac{1}{3}x+\frac{4}{5}=-\frac{1}{3}
Combine \frac{2}{3}x and -x to get -\frac{1}{3}x.
-\frac{1}{3}x=-\frac{1}{3}-\frac{4}{5}
Subtract \frac{4}{5} from both sides.
-\frac{1}{3}x=-\frac{5}{15}-\frac{12}{15}
Least common multiple of 3 and 5 is 15. Convert -\frac{1}{3} and \frac{4}{5} to fractions with denominator 15.
-\frac{1}{3}x=\frac{-5-12}{15}
Since -\frac{5}{15} and \frac{12}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{3}x=-\frac{17}{15}
Subtract 12 from -5 to get -17.
x=-\frac{17}{15}\left(-3\right)
Multiply both sides by -3, the reciprocal of -\frac{1}{3}.
x=\frac{-17\left(-3\right)}{15}
Express -\frac{17}{15}\left(-3\right) as a single fraction.
x=\frac{51}{15}
Multiply -17 and -3 to get 51.
x=\frac{17}{5}
Reduce the fraction \frac{51}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}