Solve for w
w = -\frac{63}{11} = -5\frac{8}{11} \approx -5.727272727
Share
Copied to clipboard
\frac{2}{3}w+4+\frac{1}{4}w=-\frac{5}{4}
Add \frac{1}{4}w to both sides.
\frac{11}{12}w+4=-\frac{5}{4}
Combine \frac{2}{3}w and \frac{1}{4}w to get \frac{11}{12}w.
\frac{11}{12}w=-\frac{5}{4}-4
Subtract 4 from both sides.
\frac{11}{12}w=-\frac{5}{4}-\frac{16}{4}
Convert 4 to fraction \frac{16}{4}.
\frac{11}{12}w=\frac{-5-16}{4}
Since -\frac{5}{4} and \frac{16}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{11}{12}w=-\frac{21}{4}
Subtract 16 from -5 to get -21.
w=-\frac{21}{4}\times \frac{12}{11}
Multiply both sides by \frac{12}{11}, the reciprocal of \frac{11}{12}.
w=\frac{-21\times 12}{4\times 11}
Multiply -\frac{21}{4} times \frac{12}{11} by multiplying numerator times numerator and denominator times denominator.
w=\frac{-252}{44}
Do the multiplications in the fraction \frac{-21\times 12}{4\times 11}.
w=-\frac{63}{11}
Reduce the fraction \frac{-252}{44} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}