Type a math problem

This site uses cookies for analytics, personalized content and ads. By continuing to browse this site, you agree to this use. Learn more

Type a math problem

Solve for b

b=-5+\frac{1}{3x},x\neq 0

$b=−5+3x1 ,x =0$

Steps for Solving Linear Equation

\frac { 2 } { 3 } - 5 x = b x + \frac { 1 } { 3 }

$32 −5x=bx+31 $

Swap sides so that all variable terms are on the left hand side.

Swap sides so that all variable terms are on the left hand side.

bx+\frac{1}{3}=\frac{2}{3}-5x

$bx+31 =32 −5x$

Subtract \frac{1}{3}\approx 0.333333333 from both sides.

Subtract $31 ≈0.333333333$ from both sides.

bx=\frac{2}{3}-5x-\frac{1}{3}

$bx=32 −5x−31 $

Subtract \frac{1}{3}\approx 0.333333333 from \frac{2}{3}\approx 0.666666667 to get \frac{1}{3}\approx 0.333333333.

Subtract $31 ≈0.333333333$ from $32 ≈0.666666667$ to get $31 ≈0.333333333$.

bx=\frac{1}{3}-5x

$bx=31 −5x$

The equation is in standard form.

The equation is in standard form.

xb=\frac{1}{3}-5x

$xb=31 −5x$

Divide both sides by x.

Divide both sides by $x$.

\frac{xb}{x}=\frac{\frac{1}{3}-5x}{x}

$xxb =x31 −5x $

Dividing by x undoes the multiplication by x.

Dividing by $x$ undoes the multiplication by $x$.

b=\frac{\frac{1}{3}-5x}{x}

$b=x31 −5x $

Divide \frac{1}{3}-5x by x.

Divide $31 −5x$ by $x$.

b=-5+\frac{1}{3x}

$b=−5+3x1 $

Solve for x

x=\frac{1}{3\left(b+5\right)},b\neq -5

$x=3(b+5)1 ,b =−5$

Steps for Solving Linear Equation

\frac { 2 } { 3 } - 5 x = b x + \frac { 1 } { 3 }

$32 −5x=bx+31 $

Subtract bx from both sides.

Subtract $bx$ from both sides.

\frac{2}{3}-5x-bx=\frac{1}{3}

$32 −5x−bx=31 $

Subtract \frac{2}{3}\approx 0.666666667 from both sides.

Subtract $32 ≈0.666666667$ from both sides.

-5x-bx=\frac{1}{3}-\frac{2}{3}

$−5x−bx=31 −32 $

Subtract \frac{2}{3}\approx 0.666666667 from \frac{1}{3}\approx 0.333333333 to get -\frac{1}{3}\approx -0.333333333.

Subtract $32 ≈0.666666667$ from $31 ≈0.333333333$ to get $−31 ≈−0.333333333$.

-5x-bx=-\frac{1}{3}

$−5x−bx=−31 $

Combine all terms containing x.

Combine all terms containing $x$.

\left(-5-b\right)x=-\frac{1}{3}

$(−5−b)x=−31 $

The equation is in standard form.

The equation is in standard form.

\left(-b-5\right)x=-\frac{1}{3}

$(−b−5)x=−31 $

Divide both sides by -5-b.

Divide both sides by $−5−b$.

\frac{\left(-b-5\right)x}{-b-5}=\frac{-\frac{1}{3}}{-b-5}

$−b−5(−b−5)x =−b−5−31 $

Dividing by -5-b undoes the multiplication by -5-b.

Dividing by $−5−b$ undoes the multiplication by $−5−b$.

x=\frac{-\frac{1}{3}}{-b-5}

$x=−b−5−31 $

Divide -\frac{1}{3}\approx -0.333333333 by -5-b.

Divide $−31 ≈−0.333333333$ by $−5−b$.

x=\frac{1}{3\left(b+5\right)}

$x=3(b+5)1 $

Graph

Graph Both Sides in 2D

Graph in 2D

Giving is as easy as 1, 2, 3

Get 1,000 points to donate to a school of your choice when you join Give With Bing

Share

Copy

Copied to clipboard

bx+\frac{1}{3}=\frac{2}{3}-5x

Swap sides so that all variable terms are on the left hand side.

bx=\frac{2}{3}-5x-\frac{1}{3}

Subtract \frac{1}{3}\approx 0.333333333 from both sides.

bx=\frac{1}{3}-5x

Subtract \frac{1}{3}\approx 0.333333333 from \frac{2}{3}\approx 0.666666667 to get \frac{1}{3}\approx 0.333333333.

xb=\frac{1}{3}-5x

The equation is in standard form.

\frac{xb}{x}=\frac{\frac{1}{3}-5x}{x}

Divide both sides by x.

b=\frac{\frac{1}{3}-5x}{x}

Dividing by x undoes the multiplication by x.

b=-5+\frac{1}{3x}

Divide \frac{1}{3}-5x by x.

\frac{2}{3}-5x-bx=\frac{1}{3}

Subtract bx from both sides.

-5x-bx=\frac{1}{3}-\frac{2}{3}

Subtract \frac{2}{3}\approx 0.666666667 from both sides.

-5x-bx=-\frac{1}{3}

Subtract \frac{2}{3}\approx 0.666666667 from \frac{1}{3}\approx 0.333333333 to get -\frac{1}{3}\approx -0.333333333.

\left(-5-b\right)x=-\frac{1}{3}

Combine all terms containing x.

\left(-b-5\right)x=-\frac{1}{3}

The equation is in standard form.

\frac{\left(-b-5\right)x}{-b-5}=\frac{-\frac{1}{3}}{-b-5}

Divide both sides by -5-b.

x=\frac{-\frac{1}{3}}{-b-5}

Dividing by -5-b undoes the multiplication by -5-b.

x=\frac{1}{3\left(b+5\right)}

Divide -\frac{1}{3}\approx -0.333333333 by -5-b.

Examples

Quadratic equation

{ x } ^ { 2 } - 4 x - 5 = 0

$x_{2}−4x−5=0$

Trigonometry

4 \sin \theta \cos \theta = 2 \sin \theta

$4sinθcosθ=2sinθ$

Linear equation

y = 3x + 4

$y=3x+4$

Arithmetic

699 * 533

$699∗533$

Matrix

\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { - 1 } & { 1 } & { 5 } \end{array} \right]

$[25 34 ][2−1 01 35 ]$

Simultaneous equation

\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.

${8x+2y=467x+3y=47 $

Differentiation

\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }

$dxd (x−5)(3x_{2}−2) $

Integration

\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x

$∫_{0}xe_{−x_{2}}dx$

Limits

\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}

$x→−3lim x_{2}+2x−3x_{2}−9 $

Back to top