Solve for x
x = \frac{59}{27} = 2\frac{5}{27} \approx 2.185185185
Graph
Share
Copied to clipboard
8-3\left(x-5\right)=24x-36
Multiply both sides of the equation by 12, the least common multiple of 3,4.
8-3x+15=24x-36
Use the distributive property to multiply -3 by x-5.
23-3x=24x-36
Add 8 and 15 to get 23.
23-3x-24x=-36
Subtract 24x from both sides.
23-27x=-36
Combine -3x and -24x to get -27x.
-27x=-36-23
Subtract 23 from both sides.
-27x=-59
Subtract 23 from -36 to get -59.
x=\frac{-59}{-27}
Divide both sides by -27.
x=\frac{59}{27}
Fraction \frac{-59}{-27} can be simplified to \frac{59}{27} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}