Solve for x
x=-\frac{4}{9}\approx -0.444444444
Graph
Share
Copied to clipboard
3\left(3x-1\right)\left(3x+1\right)\times \frac{2}{3}-3\times 6x^{2}=\left(9x+3\right)\times 2
Variable x cannot be equal to any of the values -\frac{1}{3},\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by 3\left(3x-1\right)\left(3x+1\right), the least common multiple of 3,9x^{2}-1,3x-1.
\left(9x-3\right)\left(3x+1\right)\times \frac{2}{3}-3\times 6x^{2}=\left(9x+3\right)\times 2
Use the distributive property to multiply 3 by 3x-1.
\left(27x^{2}-3\right)\times \frac{2}{3}-3\times 6x^{2}=\left(9x+3\right)\times 2
Use the distributive property to multiply 9x-3 by 3x+1 and combine like terms.
18x^{2}-2-3\times 6x^{2}=\left(9x+3\right)\times 2
Use the distributive property to multiply 27x^{2}-3 by \frac{2}{3}.
18x^{2}-2-18x^{2}=\left(9x+3\right)\times 2
Multiply -3 and 6 to get -18.
-2=\left(9x+3\right)\times 2
Combine 18x^{2} and -18x^{2} to get 0.
-2=18x+6
Use the distributive property to multiply 9x+3 by 2.
18x+6=-2
Swap sides so that all variable terms are on the left hand side.
18x=-2-6
Subtract 6 from both sides.
18x=-8
Subtract 6 from -2 to get -8.
x=\frac{-8}{18}
Divide both sides by 18.
x=-\frac{4}{9}
Reduce the fraction \frac{-8}{18} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}