Evaluate
\frac{17}{12}\approx 1.416666667
Factor
\frac{17}{2 ^ {2} \cdot 3} = 1\frac{5}{12} = 1.4166666666666667
Share
Copied to clipboard
\frac{2}{3}-\frac{3}{2}\left(\frac{4}{6}-\frac{9}{6}\right)+\frac{1}{3}\left(\frac{3}{2}-3\right)
Least common multiple of 3 and 2 is 6. Convert \frac{2}{3} and \frac{3}{2} to fractions with denominator 6.
\frac{2}{3}-\frac{3}{2}\times \frac{4-9}{6}+\frac{1}{3}\left(\frac{3}{2}-3\right)
Since \frac{4}{6} and \frac{9}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}-\frac{3}{2}\left(-\frac{5}{6}\right)+\frac{1}{3}\left(\frac{3}{2}-3\right)
Subtract 9 from 4 to get -5.
\frac{2}{3}-\frac{3\left(-5\right)}{2\times 6}+\frac{1}{3}\left(\frac{3}{2}-3\right)
Multiply \frac{3}{2} times -\frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}-\frac{-15}{12}+\frac{1}{3}\left(\frac{3}{2}-3\right)
Do the multiplications in the fraction \frac{3\left(-5\right)}{2\times 6}.
\frac{2}{3}-\left(-\frac{5}{4}\right)+\frac{1}{3}\left(\frac{3}{2}-3\right)
Reduce the fraction \frac{-15}{12} to lowest terms by extracting and canceling out 3.
\frac{2}{3}+\frac{5}{4}+\frac{1}{3}\left(\frac{3}{2}-3\right)
The opposite of -\frac{5}{4} is \frac{5}{4}.
\frac{8}{12}+\frac{15}{12}+\frac{1}{3}\left(\frac{3}{2}-3\right)
Least common multiple of 3 and 4 is 12. Convert \frac{2}{3} and \frac{5}{4} to fractions with denominator 12.
\frac{8+15}{12}+\frac{1}{3}\left(\frac{3}{2}-3\right)
Since \frac{8}{12} and \frac{15}{12} have the same denominator, add them by adding their numerators.
\frac{23}{12}+\frac{1}{3}\left(\frac{3}{2}-3\right)
Add 8 and 15 to get 23.
\frac{23}{12}+\frac{1}{3}\left(\frac{3}{2}-\frac{6}{2}\right)
Convert 3 to fraction \frac{6}{2}.
\frac{23}{12}+\frac{1}{3}\times \frac{3-6}{2}
Since \frac{3}{2} and \frac{6}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{23}{12}+\frac{1}{3}\left(-\frac{3}{2}\right)
Subtract 6 from 3 to get -3.
\frac{23}{12}+\frac{1\left(-3\right)}{3\times 2}
Multiply \frac{1}{3} times -\frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{23}{12}+\frac{-3}{6}
Do the multiplications in the fraction \frac{1\left(-3\right)}{3\times 2}.
\frac{23}{12}-\frac{1}{2}
Reduce the fraction \frac{-3}{6} to lowest terms by extracting and canceling out 3.
\frac{23}{12}-\frac{6}{12}
Least common multiple of 12 and 2 is 12. Convert \frac{23}{12} and \frac{1}{2} to fractions with denominator 12.
\frac{23-6}{12}
Since \frac{23}{12} and \frac{6}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{17}{12}
Subtract 6 from 23 to get 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}