Evaluate
-\frac{2x}{3}+\frac{13}{15}
Expand
-\frac{2x}{3}+\frac{13}{15}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { 2 } { 3 } - \frac { 1 } { 3 } ( 2 x - \frac { 3 } { 5 } )
Share
Copied to clipboard
\frac{2}{3}-\frac{1}{3}\times 2x-\frac{1}{3}\left(-\frac{3}{5}\right)
Use the distributive property to multiply -\frac{1}{3} by 2x-\frac{3}{5}.
\frac{2}{3}+\frac{-2}{3}x-\frac{1}{3}\left(-\frac{3}{5}\right)
Express -\frac{1}{3}\times 2 as a single fraction.
\frac{2}{3}-\frac{2}{3}x-\frac{1}{3}\left(-\frac{3}{5}\right)
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{2}{3}-\frac{2}{3}x+\frac{-\left(-3\right)}{3\times 5}
Multiply -\frac{1}{3} times -\frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}-\frac{2}{3}x+\frac{3}{15}
Do the multiplications in the fraction \frac{-\left(-3\right)}{3\times 5}.
\frac{2}{3}-\frac{2}{3}x+\frac{1}{5}
Reduce the fraction \frac{3}{15} to lowest terms by extracting and canceling out 3.
\frac{10}{15}-\frac{2}{3}x+\frac{3}{15}
Least common multiple of 3 and 5 is 15. Convert \frac{2}{3} and \frac{1}{5} to fractions with denominator 15.
\frac{10+3}{15}-\frac{2}{3}x
Since \frac{10}{15} and \frac{3}{15} have the same denominator, add them by adding their numerators.
\frac{13}{15}-\frac{2}{3}x
Add 10 and 3 to get 13.
\frac{2}{3}-\frac{1}{3}\times 2x-\frac{1}{3}\left(-\frac{3}{5}\right)
Use the distributive property to multiply -\frac{1}{3} by 2x-\frac{3}{5}.
\frac{2}{3}+\frac{-2}{3}x-\frac{1}{3}\left(-\frac{3}{5}\right)
Express -\frac{1}{3}\times 2 as a single fraction.
\frac{2}{3}-\frac{2}{3}x-\frac{1}{3}\left(-\frac{3}{5}\right)
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{2}{3}-\frac{2}{3}x+\frac{-\left(-3\right)}{3\times 5}
Multiply -\frac{1}{3} times -\frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}-\frac{2}{3}x+\frac{3}{15}
Do the multiplications in the fraction \frac{-\left(-3\right)}{3\times 5}.
\frac{2}{3}-\frac{2}{3}x+\frac{1}{5}
Reduce the fraction \frac{3}{15} to lowest terms by extracting and canceling out 3.
\frac{10}{15}-\frac{2}{3}x+\frac{3}{15}
Least common multiple of 3 and 5 is 15. Convert \frac{2}{3} and \frac{1}{5} to fractions with denominator 15.
\frac{10+3}{15}-\frac{2}{3}x
Since \frac{10}{15} and \frac{3}{15} have the same denominator, add them by adding their numerators.
\frac{13}{15}-\frac{2}{3}x
Add 10 and 3 to get 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}