Evaluate
-3
Factor
-3
Share
Copied to clipboard
\frac{2}{3}-\frac{1}{2}\times \frac{64}{9}-\left(\frac{1}{3}\right)^{2}
Calculate \frac{8}{3} to the power of 2 and get \frac{64}{9}.
\frac{2}{3}-\frac{1\times 64}{2\times 9}-\left(\frac{1}{3}\right)^{2}
Multiply \frac{1}{2} times \frac{64}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}-\frac{64}{18}-\left(\frac{1}{3}\right)^{2}
Do the multiplications in the fraction \frac{1\times 64}{2\times 9}.
\frac{2}{3}-\frac{32}{9}-\left(\frac{1}{3}\right)^{2}
Reduce the fraction \frac{64}{18} to lowest terms by extracting and canceling out 2.
\frac{6}{9}-\frac{32}{9}-\left(\frac{1}{3}\right)^{2}
Least common multiple of 3 and 9 is 9. Convert \frac{2}{3} and \frac{32}{9} to fractions with denominator 9.
\frac{6-32}{9}-\left(\frac{1}{3}\right)^{2}
Since \frac{6}{9} and \frac{32}{9} have the same denominator, subtract them by subtracting their numerators.
-\frac{26}{9}-\left(\frac{1}{3}\right)^{2}
Subtract 32 from 6 to get -26.
-\frac{26}{9}-\frac{1}{9}
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{-26-1}{9}
Since -\frac{26}{9} and \frac{1}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{-27}{9}
Subtract 1 from -26 to get -27.
-3
Divide -27 by 9 to get -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}