Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{3}x+\frac{2}{3}\left(-5\right)-\frac{1}{4}\left(x-2\right)-\frac{9}{2}
Use the distributive property to multiply \frac{2}{3} by x-5.
\frac{2}{3}x+\frac{2\left(-5\right)}{3}-\frac{1}{4}\left(x-2\right)-\frac{9}{2}
Express \frac{2}{3}\left(-5\right) as a single fraction.
\frac{2}{3}x+\frac{-10}{3}-\frac{1}{4}\left(x-2\right)-\frac{9}{2}
Multiply 2 and -5 to get -10.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}\left(x-2\right)-\frac{9}{2}
Fraction \frac{-10}{3} can be rewritten as -\frac{10}{3} by extracting the negative sign.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}x-\frac{1}{4}\left(-2\right)-\frac{9}{2}
Use the distributive property to multiply -\frac{1}{4} by x-2.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}x+\frac{-\left(-2\right)}{4}-\frac{9}{2}
Express -\frac{1}{4}\left(-2\right) as a single fraction.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}x+\frac{2}{4}-\frac{9}{2}
Multiply -1 and -2 to get 2.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}x+\frac{1}{2}-\frac{9}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{5}{12}x-\frac{10}{3}+\frac{1}{2}-\frac{9}{2}
Combine \frac{2}{3}x and -\frac{1}{4}x to get \frac{5}{12}x.
\frac{5}{12}x-\frac{20}{6}+\frac{3}{6}-\frac{9}{2}
Least common multiple of 3 and 2 is 6. Convert -\frac{10}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{5}{12}x+\frac{-20+3}{6}-\frac{9}{2}
Since -\frac{20}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{5}{12}x-\frac{17}{6}-\frac{9}{2}
Add -20 and 3 to get -17.
\frac{5}{12}x-\frac{17}{6}-\frac{27}{6}
Least common multiple of 6 and 2 is 6. Convert -\frac{17}{6} and \frac{9}{2} to fractions with denominator 6.
\frac{5}{12}x+\frac{-17-27}{6}
Since -\frac{17}{6} and \frac{27}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{12}x+\frac{-44}{6}
Subtract 27 from -17 to get -44.
\frac{5}{12}x-\frac{22}{3}
Reduce the fraction \frac{-44}{6} to lowest terms by extracting and canceling out 2.
\frac{2}{3}x+\frac{2}{3}\left(-5\right)-\frac{1}{4}\left(x-2\right)-\frac{9}{2}
Use the distributive property to multiply \frac{2}{3} by x-5.
\frac{2}{3}x+\frac{2\left(-5\right)}{3}-\frac{1}{4}\left(x-2\right)-\frac{9}{2}
Express \frac{2}{3}\left(-5\right) as a single fraction.
\frac{2}{3}x+\frac{-10}{3}-\frac{1}{4}\left(x-2\right)-\frac{9}{2}
Multiply 2 and -5 to get -10.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}\left(x-2\right)-\frac{9}{2}
Fraction \frac{-10}{3} can be rewritten as -\frac{10}{3} by extracting the negative sign.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}x-\frac{1}{4}\left(-2\right)-\frac{9}{2}
Use the distributive property to multiply -\frac{1}{4} by x-2.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}x+\frac{-\left(-2\right)}{4}-\frac{9}{2}
Express -\frac{1}{4}\left(-2\right) as a single fraction.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}x+\frac{2}{4}-\frac{9}{2}
Multiply -1 and -2 to get 2.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}x+\frac{1}{2}-\frac{9}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{5}{12}x-\frac{10}{3}+\frac{1}{2}-\frac{9}{2}
Combine \frac{2}{3}x and -\frac{1}{4}x to get \frac{5}{12}x.
\frac{5}{12}x-\frac{20}{6}+\frac{3}{6}-\frac{9}{2}
Least common multiple of 3 and 2 is 6. Convert -\frac{10}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{5}{12}x+\frac{-20+3}{6}-\frac{9}{2}
Since -\frac{20}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{5}{12}x-\frac{17}{6}-\frac{9}{2}
Add -20 and 3 to get -17.
\frac{5}{12}x-\frac{17}{6}-\frac{27}{6}
Least common multiple of 6 and 2 is 6. Convert -\frac{17}{6} and \frac{9}{2} to fractions with denominator 6.
\frac{5}{12}x+\frac{-17-27}{6}
Since -\frac{17}{6} and \frac{27}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{12}x+\frac{-44}{6}
Subtract 27 from -17 to get -44.
\frac{5}{12}x-\frac{22}{3}
Reduce the fraction \frac{-44}{6} to lowest terms by extracting and canceling out 2.