Evaluate
\frac{5x}{12}-\frac{22}{3}
Expand
\frac{5x}{12}-\frac{22}{3}
Graph
Share
Copied to clipboard
\frac{2}{3}x+\frac{2}{3}\left(-5\right)-\frac{1}{4}\left(x-2\right)-\frac{9}{2}
Use the distributive property to multiply \frac{2}{3} by x-5.
\frac{2}{3}x+\frac{2\left(-5\right)}{3}-\frac{1}{4}\left(x-2\right)-\frac{9}{2}
Express \frac{2}{3}\left(-5\right) as a single fraction.
\frac{2}{3}x+\frac{-10}{3}-\frac{1}{4}\left(x-2\right)-\frac{9}{2}
Multiply 2 and -5 to get -10.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}\left(x-2\right)-\frac{9}{2}
Fraction \frac{-10}{3} can be rewritten as -\frac{10}{3} by extracting the negative sign.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}x-\frac{1}{4}\left(-2\right)-\frac{9}{2}
Use the distributive property to multiply -\frac{1}{4} by x-2.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}x+\frac{-\left(-2\right)}{4}-\frac{9}{2}
Express -\frac{1}{4}\left(-2\right) as a single fraction.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}x+\frac{2}{4}-\frac{9}{2}
Multiply -1 and -2 to get 2.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}x+\frac{1}{2}-\frac{9}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{5}{12}x-\frac{10}{3}+\frac{1}{2}-\frac{9}{2}
Combine \frac{2}{3}x and -\frac{1}{4}x to get \frac{5}{12}x.
\frac{5}{12}x-\frac{20}{6}+\frac{3}{6}-\frac{9}{2}
Least common multiple of 3 and 2 is 6. Convert -\frac{10}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{5}{12}x+\frac{-20+3}{6}-\frac{9}{2}
Since -\frac{20}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{5}{12}x-\frac{17}{6}-\frac{9}{2}
Add -20 and 3 to get -17.
\frac{5}{12}x-\frac{17}{6}-\frac{27}{6}
Least common multiple of 6 and 2 is 6. Convert -\frac{17}{6} and \frac{9}{2} to fractions with denominator 6.
\frac{5}{12}x+\frac{-17-27}{6}
Since -\frac{17}{6} and \frac{27}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{12}x+\frac{-44}{6}
Subtract 27 from -17 to get -44.
\frac{5}{12}x-\frac{22}{3}
Reduce the fraction \frac{-44}{6} to lowest terms by extracting and canceling out 2.
\frac{2}{3}x+\frac{2}{3}\left(-5\right)-\frac{1}{4}\left(x-2\right)-\frac{9}{2}
Use the distributive property to multiply \frac{2}{3} by x-5.
\frac{2}{3}x+\frac{2\left(-5\right)}{3}-\frac{1}{4}\left(x-2\right)-\frac{9}{2}
Express \frac{2}{3}\left(-5\right) as a single fraction.
\frac{2}{3}x+\frac{-10}{3}-\frac{1}{4}\left(x-2\right)-\frac{9}{2}
Multiply 2 and -5 to get -10.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}\left(x-2\right)-\frac{9}{2}
Fraction \frac{-10}{3} can be rewritten as -\frac{10}{3} by extracting the negative sign.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}x-\frac{1}{4}\left(-2\right)-\frac{9}{2}
Use the distributive property to multiply -\frac{1}{4} by x-2.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}x+\frac{-\left(-2\right)}{4}-\frac{9}{2}
Express -\frac{1}{4}\left(-2\right) as a single fraction.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}x+\frac{2}{4}-\frac{9}{2}
Multiply -1 and -2 to get 2.
\frac{2}{3}x-\frac{10}{3}-\frac{1}{4}x+\frac{1}{2}-\frac{9}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{5}{12}x-\frac{10}{3}+\frac{1}{2}-\frac{9}{2}
Combine \frac{2}{3}x and -\frac{1}{4}x to get \frac{5}{12}x.
\frac{5}{12}x-\frac{20}{6}+\frac{3}{6}-\frac{9}{2}
Least common multiple of 3 and 2 is 6. Convert -\frac{10}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{5}{12}x+\frac{-20+3}{6}-\frac{9}{2}
Since -\frac{20}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{5}{12}x-\frac{17}{6}-\frac{9}{2}
Add -20 and 3 to get -17.
\frac{5}{12}x-\frac{17}{6}-\frac{27}{6}
Least common multiple of 6 and 2 is 6. Convert -\frac{17}{6} and \frac{9}{2} to fractions with denominator 6.
\frac{5}{12}x+\frac{-17-27}{6}
Since -\frac{17}{6} and \frac{27}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{12}x+\frac{-44}{6}
Subtract 27 from -17 to get -44.
\frac{5}{12}x-\frac{22}{3}
Reduce the fraction \frac{-44}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}