Solve for x
x=-\frac{2}{5}=-0.4
Graph
Share
Copied to clipboard
\frac{2}{3}x+\frac{2}{3}\left(-2\right)=4x
Use the distributive property to multiply \frac{2}{3} by x-2.
\frac{2}{3}x+\frac{2\left(-2\right)}{3}=4x
Express \frac{2}{3}\left(-2\right) as a single fraction.
\frac{2}{3}x+\frac{-4}{3}=4x
Multiply 2 and -2 to get -4.
\frac{2}{3}x-\frac{4}{3}=4x
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
\frac{2}{3}x-\frac{4}{3}-4x=0
Subtract 4x from both sides.
-\frac{10}{3}x-\frac{4}{3}=0
Combine \frac{2}{3}x and -4x to get -\frac{10}{3}x.
-\frac{10}{3}x=\frac{4}{3}
Add \frac{4}{3} to both sides. Anything plus zero gives itself.
x=\frac{4}{3}\left(-\frac{3}{10}\right)
Multiply both sides by -\frac{3}{10}, the reciprocal of -\frac{10}{3}.
x=\frac{4\left(-3\right)}{3\times 10}
Multiply \frac{4}{3} times -\frac{3}{10} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-12}{30}
Do the multiplications in the fraction \frac{4\left(-3\right)}{3\times 10}.
x=-\frac{2}{5}
Reduce the fraction \frac{-12}{30} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}