Solve for x
x=\frac{19}{20}=0.95
Graph
Share
Copied to clipboard
\frac{2}{3}x+\frac{2}{3}\left(-1\right)=\frac{5}{6}\left(3-2x\right)-x
Use the distributive property to multiply \frac{2}{3} by x-1.
\frac{2}{3}x-\frac{2}{3}=\frac{5}{6}\left(3-2x\right)-x
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
\frac{2}{3}x-\frac{2}{3}=\frac{5}{6}\times 3+\frac{5}{6}\left(-2\right)x-x
Use the distributive property to multiply \frac{5}{6} by 3-2x.
\frac{2}{3}x-\frac{2}{3}=\frac{5\times 3}{6}+\frac{5}{6}\left(-2\right)x-x
Express \frac{5}{6}\times 3 as a single fraction.
\frac{2}{3}x-\frac{2}{3}=\frac{15}{6}+\frac{5}{6}\left(-2\right)x-x
Multiply 5 and 3 to get 15.
\frac{2}{3}x-\frac{2}{3}=\frac{5}{2}+\frac{5}{6}\left(-2\right)x-x
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
\frac{2}{3}x-\frac{2}{3}=\frac{5}{2}+\frac{5\left(-2\right)}{6}x-x
Express \frac{5}{6}\left(-2\right) as a single fraction.
\frac{2}{3}x-\frac{2}{3}=\frac{5}{2}+\frac{-10}{6}x-x
Multiply 5 and -2 to get -10.
\frac{2}{3}x-\frac{2}{3}=\frac{5}{2}-\frac{5}{3}x-x
Reduce the fraction \frac{-10}{6} to lowest terms by extracting and canceling out 2.
\frac{2}{3}x-\frac{2}{3}=\frac{5}{2}-\frac{8}{3}x
Combine -\frac{5}{3}x and -x to get -\frac{8}{3}x.
\frac{2}{3}x-\frac{2}{3}+\frac{8}{3}x=\frac{5}{2}
Add \frac{8}{3}x to both sides.
\frac{10}{3}x-\frac{2}{3}=\frac{5}{2}
Combine \frac{2}{3}x and \frac{8}{3}x to get \frac{10}{3}x.
\frac{10}{3}x=\frac{5}{2}+\frac{2}{3}
Add \frac{2}{3} to both sides.
\frac{10}{3}x=\frac{15}{6}+\frac{4}{6}
Least common multiple of 2 and 3 is 6. Convert \frac{5}{2} and \frac{2}{3} to fractions with denominator 6.
\frac{10}{3}x=\frac{15+4}{6}
Since \frac{15}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
\frac{10}{3}x=\frac{19}{6}
Add 15 and 4 to get 19.
x=\frac{19}{6}\times \frac{3}{10}
Multiply both sides by \frac{3}{10}, the reciprocal of \frac{10}{3}.
x=\frac{19\times 3}{6\times 10}
Multiply \frac{19}{6} times \frac{3}{10} by multiplying numerator times numerator and denominator times denominator.
x=\frac{57}{60}
Do the multiplications in the fraction \frac{19\times 3}{6\times 10}.
x=\frac{19}{20}
Reduce the fraction \frac{57}{60} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}