Solve for a
a=\frac{2y-7x}{9}
Solve for x
x=\frac{2y-9a}{7}
Graph
Share
Copied to clipboard
\frac{2}{3}x+\frac{2}{3}y=3\left(x+a\right)
Use the distributive property to multiply \frac{2}{3} by x+y.
\frac{2}{3}x+\frac{2}{3}y=3x+3a
Use the distributive property to multiply 3 by x+a.
3x+3a=\frac{2}{3}x+\frac{2}{3}y
Swap sides so that all variable terms are on the left hand side.
3a=\frac{2}{3}x+\frac{2}{3}y-3x
Subtract 3x from both sides.
3a=-\frac{7}{3}x+\frac{2}{3}y
Combine \frac{2}{3}x and -3x to get -\frac{7}{3}x.
3a=\frac{2y-7x}{3}
The equation is in standard form.
\frac{3a}{3}=\frac{2y-7x}{3\times 3}
Divide both sides by 3.
a=\frac{2y-7x}{3\times 3}
Dividing by 3 undoes the multiplication by 3.
a=\frac{2y-7x}{9}
Divide \frac{-7x+2y}{3} by 3.
\frac{2}{3}x+\frac{2}{3}y=3\left(x+a\right)
Use the distributive property to multiply \frac{2}{3} by x+y.
\frac{2}{3}x+\frac{2}{3}y=3x+3a
Use the distributive property to multiply 3 by x+a.
\frac{2}{3}x+\frac{2}{3}y-3x=3a
Subtract 3x from both sides.
-\frac{7}{3}x+\frac{2}{3}y=3a
Combine \frac{2}{3}x and -3x to get -\frac{7}{3}x.
-\frac{7}{3}x=3a-\frac{2}{3}y
Subtract \frac{2}{3}y from both sides.
-\frac{7}{3}x=-\frac{2y}{3}+3a
The equation is in standard form.
\frac{-\frac{7}{3}x}{-\frac{7}{3}}=\frac{-\frac{2y}{3}+3a}{-\frac{7}{3}}
Divide both sides of the equation by -\frac{7}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-\frac{2y}{3}+3a}{-\frac{7}{3}}
Dividing by -\frac{7}{3} undoes the multiplication by -\frac{7}{3}.
x=\frac{2y-9a}{7}
Divide 3a-\frac{2y}{3} by -\frac{7}{3} by multiplying 3a-\frac{2y}{3} by the reciprocal of -\frac{7}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}