Solve for x
x=\frac{37}{156}\approx 0.237179487
Graph
Share
Copied to clipboard
\frac{2}{3}x+\frac{2}{3}\times 3-\frac{2}{3}\left(2x+5\right)+\frac{1}{3}\left(41x-5\right)=\frac{1}{12}
Use the distributive property to multiply \frac{2}{3} by x+3.
\frac{2}{3}x+2-\frac{2}{3}\left(2x+5\right)+\frac{1}{3}\left(41x-5\right)=\frac{1}{12}
Cancel out 3 and 3.
\frac{2}{3}x+2-\frac{2}{3}\times 2x-\frac{2}{3}\times 5+\frac{1}{3}\left(41x-5\right)=\frac{1}{12}
Use the distributive property to multiply -\frac{2}{3} by 2x+5.
\frac{2}{3}x+2+\frac{-2\times 2}{3}x-\frac{2}{3}\times 5+\frac{1}{3}\left(41x-5\right)=\frac{1}{12}
Express -\frac{2}{3}\times 2 as a single fraction.
\frac{2}{3}x+2+\frac{-4}{3}x-\frac{2}{3}\times 5+\frac{1}{3}\left(41x-5\right)=\frac{1}{12}
Multiply -2 and 2 to get -4.
\frac{2}{3}x+2-\frac{4}{3}x-\frac{2}{3}\times 5+\frac{1}{3}\left(41x-5\right)=\frac{1}{12}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
\frac{2}{3}x+2-\frac{4}{3}x+\frac{-2\times 5}{3}+\frac{1}{3}\left(41x-5\right)=\frac{1}{12}
Express -\frac{2}{3}\times 5 as a single fraction.
\frac{2}{3}x+2-\frac{4}{3}x+\frac{-10}{3}+\frac{1}{3}\left(41x-5\right)=\frac{1}{12}
Multiply -2 and 5 to get -10.
\frac{2}{3}x+2-\frac{4}{3}x-\frac{10}{3}+\frac{1}{3}\left(41x-5\right)=\frac{1}{12}
Fraction \frac{-10}{3} can be rewritten as -\frac{10}{3} by extracting the negative sign.
-\frac{2}{3}x+2-\frac{10}{3}+\frac{1}{3}\left(41x-5\right)=\frac{1}{12}
Combine \frac{2}{3}x and -\frac{4}{3}x to get -\frac{2}{3}x.
-\frac{2}{3}x+\frac{6}{3}-\frac{10}{3}+\frac{1}{3}\left(41x-5\right)=\frac{1}{12}
Convert 2 to fraction \frac{6}{3}.
-\frac{2}{3}x+\frac{6-10}{3}+\frac{1}{3}\left(41x-5\right)=\frac{1}{12}
Since \frac{6}{3} and \frac{10}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{2}{3}x-\frac{4}{3}+\frac{1}{3}\left(41x-5\right)=\frac{1}{12}
Subtract 10 from 6 to get -4.
-\frac{2}{3}x-\frac{4}{3}+\frac{1}{3}\times 41x+\frac{1}{3}\left(-5\right)=\frac{1}{12}
Use the distributive property to multiply \frac{1}{3} by 41x-5.
-\frac{2}{3}x-\frac{4}{3}+\frac{41}{3}x+\frac{1}{3}\left(-5\right)=\frac{1}{12}
Multiply \frac{1}{3} and 41 to get \frac{41}{3}.
-\frac{2}{3}x-\frac{4}{3}+\frac{41}{3}x+\frac{-5}{3}=\frac{1}{12}
Multiply \frac{1}{3} and -5 to get \frac{-5}{3}.
-\frac{2}{3}x-\frac{4}{3}+\frac{41}{3}x-\frac{5}{3}=\frac{1}{12}
Fraction \frac{-5}{3} can be rewritten as -\frac{5}{3} by extracting the negative sign.
13x-\frac{4}{3}-\frac{5}{3}=\frac{1}{12}
Combine -\frac{2}{3}x and \frac{41}{3}x to get 13x.
13x+\frac{-4-5}{3}=\frac{1}{12}
Since -\frac{4}{3} and \frac{5}{3} have the same denominator, subtract them by subtracting their numerators.
13x+\frac{-9}{3}=\frac{1}{12}
Subtract 5 from -4 to get -9.
13x-3=\frac{1}{12}
Divide -9 by 3 to get -3.
13x=\frac{1}{12}+3
Add 3 to both sides.
13x=\frac{1}{12}+\frac{36}{12}
Convert 3 to fraction \frac{36}{12}.
13x=\frac{1+36}{12}
Since \frac{1}{12} and \frac{36}{12} have the same denominator, add them by adding their numerators.
13x=\frac{37}{12}
Add 1 and 36 to get 37.
x=\frac{\frac{37}{12}}{13}
Divide both sides by 13.
x=\frac{37}{12\times 13}
Express \frac{\frac{37}{12}}{13} as a single fraction.
x=\frac{37}{156}
Multiply 12 and 13 to get 156.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}