\frac { 2 } { 3 } ( x + 3 ) = \frac { 1 } { 2 } - \frac { 1 } { 6 } ( 2 - 3 x
Solve for x
x=-11
Graph
Share
Copied to clipboard
\frac{2}{3}x+\frac{2}{3}\times 3=\frac{1}{2}-\frac{1}{6}\left(2-3x\right)
Use the distributive property to multiply \frac{2}{3} by x+3.
\frac{2}{3}x+2=\frac{1}{2}-\frac{1}{6}\left(2-3x\right)
Cancel out 3 and 3.
\frac{2}{3}x+2=\frac{1}{2}-\frac{1}{6}\times 2-\frac{1}{6}\left(-3\right)x
Use the distributive property to multiply -\frac{1}{6} by 2-3x.
\frac{2}{3}x+2=\frac{1}{2}+\frac{-2}{6}-\frac{1}{6}\left(-3\right)x
Express -\frac{1}{6}\times 2 as a single fraction.
\frac{2}{3}x+2=\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\left(-3\right)x
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
\frac{2}{3}x+2=\frac{1}{2}-\frac{1}{3}+\frac{-\left(-3\right)}{6}x
Express -\frac{1}{6}\left(-3\right) as a single fraction.
\frac{2}{3}x+2=\frac{1}{2}-\frac{1}{3}+\frac{3}{6}x
Multiply -1 and -3 to get 3.
\frac{2}{3}x+2=\frac{1}{2}-\frac{1}{3}+\frac{1}{2}x
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{2}{3}x+2=\frac{3}{6}-\frac{2}{6}+\frac{1}{2}x
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{2}{3}x+2=\frac{3-2}{6}+\frac{1}{2}x
Since \frac{3}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}x+2=\frac{1}{6}+\frac{1}{2}x
Subtract 2 from 3 to get 1.
\frac{2}{3}x+2-\frac{1}{2}x=\frac{1}{6}
Subtract \frac{1}{2}x from both sides.
\frac{1}{6}x+2=\frac{1}{6}
Combine \frac{2}{3}x and -\frac{1}{2}x to get \frac{1}{6}x.
\frac{1}{6}x=\frac{1}{6}-2
Subtract 2 from both sides.
\frac{1}{6}x=\frac{1}{6}-\frac{12}{6}
Convert 2 to fraction \frac{12}{6}.
\frac{1}{6}x=\frac{1-12}{6}
Since \frac{1}{6} and \frac{12}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{6}x=-\frac{11}{6}
Subtract 12 from 1 to get -11.
x=-\frac{11}{6}\times 6
Multiply both sides by 6, the reciprocal of \frac{1}{6}.
x=-11
Cancel out 6 and 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}