Solve for x
x = \frac{103}{6} = 17\frac{1}{6} \approx 17.166666667
Graph
Share
Copied to clipboard
\frac{2}{3}x+\frac{2}{3}\times 2+7=\frac{4}{9}\left(3x-7\right)
Use the distributive property to multiply \frac{2}{3} by x+2.
\frac{2}{3}x+\frac{2\times 2}{3}+7=\frac{4}{9}\left(3x-7\right)
Express \frac{2}{3}\times 2 as a single fraction.
\frac{2}{3}x+\frac{4}{3}+7=\frac{4}{9}\left(3x-7\right)
Multiply 2 and 2 to get 4.
\frac{2}{3}x+\frac{4}{3}+\frac{21}{3}=\frac{4}{9}\left(3x-7\right)
Convert 7 to fraction \frac{21}{3}.
\frac{2}{3}x+\frac{4+21}{3}=\frac{4}{9}\left(3x-7\right)
Since \frac{4}{3} and \frac{21}{3} have the same denominator, add them by adding their numerators.
\frac{2}{3}x+\frac{25}{3}=\frac{4}{9}\left(3x-7\right)
Add 4 and 21 to get 25.
\frac{2}{3}x+\frac{25}{3}=\frac{4}{9}\times 3x+\frac{4}{9}\left(-7\right)
Use the distributive property to multiply \frac{4}{9} by 3x-7.
\frac{2}{3}x+\frac{25}{3}=\frac{4\times 3}{9}x+\frac{4}{9}\left(-7\right)
Express \frac{4}{9}\times 3 as a single fraction.
\frac{2}{3}x+\frac{25}{3}=\frac{12}{9}x+\frac{4}{9}\left(-7\right)
Multiply 4 and 3 to get 12.
\frac{2}{3}x+\frac{25}{3}=\frac{4}{3}x+\frac{4}{9}\left(-7\right)
Reduce the fraction \frac{12}{9} to lowest terms by extracting and canceling out 3.
\frac{2}{3}x+\frac{25}{3}=\frac{4}{3}x+\frac{4\left(-7\right)}{9}
Express \frac{4}{9}\left(-7\right) as a single fraction.
\frac{2}{3}x+\frac{25}{3}=\frac{4}{3}x+\frac{-28}{9}
Multiply 4 and -7 to get -28.
\frac{2}{3}x+\frac{25}{3}=\frac{4}{3}x-\frac{28}{9}
Fraction \frac{-28}{9} can be rewritten as -\frac{28}{9} by extracting the negative sign.
\frac{2}{3}x+\frac{25}{3}-\frac{4}{3}x=-\frac{28}{9}
Subtract \frac{4}{3}x from both sides.
-\frac{2}{3}x+\frac{25}{3}=-\frac{28}{9}
Combine \frac{2}{3}x and -\frac{4}{3}x to get -\frac{2}{3}x.
-\frac{2}{3}x=-\frac{28}{9}-\frac{25}{3}
Subtract \frac{25}{3} from both sides.
-\frac{2}{3}x=-\frac{28}{9}-\frac{75}{9}
Least common multiple of 9 and 3 is 9. Convert -\frac{28}{9} and \frac{25}{3} to fractions with denominator 9.
-\frac{2}{3}x=\frac{-28-75}{9}
Since -\frac{28}{9} and \frac{75}{9} have the same denominator, subtract them by subtracting their numerators.
-\frac{2}{3}x=-\frac{103}{9}
Subtract 75 from -28 to get -103.
x=-\frac{103}{9}\left(-\frac{3}{2}\right)
Multiply both sides by -\frac{3}{2}, the reciprocal of -\frac{2}{3}.
x=\frac{-103\left(-3\right)}{9\times 2}
Multiply -\frac{103}{9} times -\frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
x=\frac{309}{18}
Do the multiplications in the fraction \frac{-103\left(-3\right)}{9\times 2}.
x=\frac{103}{6}
Reduce the fraction \frac{309}{18} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}