Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

\frac{2}{3}t+\frac{2}{3}\left(-2\right)=\frac{3}{4}\left(t+2\right)
Use the distributive property to multiply \frac{2}{3} by t-2.
\frac{2}{3}t+\frac{2\left(-2\right)}{3}=\frac{3}{4}\left(t+2\right)
Express \frac{2}{3}\left(-2\right) as a single fraction.
\frac{2}{3}t+\frac{-4}{3}=\frac{3}{4}\left(t+2\right)
Multiply 2 and -2 to get -4.
\frac{2}{3}t-\frac{4}{3}=\frac{3}{4}\left(t+2\right)
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
\frac{2}{3}t-\frac{4}{3}=\frac{3}{4}t+\frac{3}{4}\times 2
Use the distributive property to multiply \frac{3}{4} by t+2.
\frac{2}{3}t-\frac{4}{3}=\frac{3}{4}t+\frac{3\times 2}{4}
Express \frac{3}{4}\times 2 as a single fraction.
\frac{2}{3}t-\frac{4}{3}=\frac{3}{4}t+\frac{6}{4}
Multiply 3 and 2 to get 6.
\frac{2}{3}t-\frac{4}{3}=\frac{3}{4}t+\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{2}{3}t-\frac{4}{3}-\frac{3}{4}t=\frac{3}{2}
Subtract \frac{3}{4}t from both sides.
-\frac{1}{12}t-\frac{4}{3}=\frac{3}{2}
Combine \frac{2}{3}t and -\frac{3}{4}t to get -\frac{1}{12}t.
-\frac{1}{12}t=\frac{3}{2}+\frac{4}{3}
Add \frac{4}{3} to both sides.
-\frac{1}{12}t=\frac{9}{6}+\frac{8}{6}
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{4}{3} to fractions with denominator 6.
-\frac{1}{12}t=\frac{9+8}{6}
Since \frac{9}{6} and \frac{8}{6} have the same denominator, add them by adding their numerators.
-\frac{1}{12}t=\frac{17}{6}
Add 9 and 8 to get 17.
t=\frac{17}{6}\left(-12\right)
Multiply both sides by -12, the reciprocal of -\frac{1}{12}.
t=\frac{17\left(-12\right)}{6}
Express \frac{17}{6}\left(-12\right) as a single fraction.
t=\frac{-204}{6}
Multiply 17 and -12 to get -204.
t=-34
Divide -204 by 6 to get -34.