Solve for t
t=-34
Share
Copied to clipboard
\frac{2}{3}t+\frac{2}{3}\left(-2\right)=\frac{3}{4}\left(t+2\right)
Use the distributive property to multiply \frac{2}{3} by t-2.
\frac{2}{3}t+\frac{2\left(-2\right)}{3}=\frac{3}{4}\left(t+2\right)
Express \frac{2}{3}\left(-2\right) as a single fraction.
\frac{2}{3}t+\frac{-4}{3}=\frac{3}{4}\left(t+2\right)
Multiply 2 and -2 to get -4.
\frac{2}{3}t-\frac{4}{3}=\frac{3}{4}\left(t+2\right)
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
\frac{2}{3}t-\frac{4}{3}=\frac{3}{4}t+\frac{3}{4}\times 2
Use the distributive property to multiply \frac{3}{4} by t+2.
\frac{2}{3}t-\frac{4}{3}=\frac{3}{4}t+\frac{3\times 2}{4}
Express \frac{3}{4}\times 2 as a single fraction.
\frac{2}{3}t-\frac{4}{3}=\frac{3}{4}t+\frac{6}{4}
Multiply 3 and 2 to get 6.
\frac{2}{3}t-\frac{4}{3}=\frac{3}{4}t+\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{2}{3}t-\frac{4}{3}-\frac{3}{4}t=\frac{3}{2}
Subtract \frac{3}{4}t from both sides.
-\frac{1}{12}t-\frac{4}{3}=\frac{3}{2}
Combine \frac{2}{3}t and -\frac{3}{4}t to get -\frac{1}{12}t.
-\frac{1}{12}t=\frac{3}{2}+\frac{4}{3}
Add \frac{4}{3} to both sides.
-\frac{1}{12}t=\frac{9}{6}+\frac{8}{6}
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{4}{3} to fractions with denominator 6.
-\frac{1}{12}t=\frac{9+8}{6}
Since \frac{9}{6} and \frac{8}{6} have the same denominator, add them by adding their numerators.
-\frac{1}{12}t=\frac{17}{6}
Add 9 and 8 to get 17.
t=\frac{17}{6}\left(-12\right)
Multiply both sides by -12, the reciprocal of -\frac{1}{12}.
t=\frac{17\left(-12\right)}{6}
Express \frac{17}{6}\left(-12\right) as a single fraction.
t=\frac{-204}{6}
Multiply 17 and -12 to get -204.
t=-34
Divide -204 by 6 to get -34.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}