Solve for a
a=1
Share
Copied to clipboard
8\left(a-3\right)+3\times 3\left(a+1\right)=-2\times 5\left(1-2a\right)-6\left(a+\frac{1}{3}\right)
Multiply both sides of the equation by 12, the least common multiple of 3,4,6,2.
8a-24+3\times 3\left(a+1\right)=-2\times 5\left(1-2a\right)-6\left(a+\frac{1}{3}\right)
Use the distributive property to multiply 8 by a-3.
8a-24+9\left(a+1\right)=-2\times 5\left(1-2a\right)-6\left(a+\frac{1}{3}\right)
Multiply 3 and 3 to get 9.
8a-24+9a+9=-2\times 5\left(1-2a\right)-6\left(a+\frac{1}{3}\right)
Use the distributive property to multiply 9 by a+1.
17a-24+9=-2\times 5\left(1-2a\right)-6\left(a+\frac{1}{3}\right)
Combine 8a and 9a to get 17a.
17a-15=-2\times 5\left(1-2a\right)-6\left(a+\frac{1}{3}\right)
Add -24 and 9 to get -15.
17a-15=-10\left(1-2a\right)-6\left(a+\frac{1}{3}\right)
Multiply -2 and 5 to get -10.
17a-15=-10+20a-6\left(a+\frac{1}{3}\right)
Use the distributive property to multiply -10 by 1-2a.
17a-15=-10+20a-6a-6\times \frac{1}{3}
Use the distributive property to multiply -6 by a+\frac{1}{3}.
17a-15=-10+20a-6a+\frac{-6}{3}
Multiply -6 and \frac{1}{3} to get \frac{-6}{3}.
17a-15=-10+20a-6a-2
Divide -6 by 3 to get -2.
17a-15=-10+14a-2
Combine 20a and -6a to get 14a.
17a-15=-12+14a
Subtract 2 from -10 to get -12.
17a-15-14a=-12
Subtract 14a from both sides.
3a-15=-12
Combine 17a and -14a to get 3a.
3a=-12+15
Add 15 to both sides.
3a=3
Add -12 and 15 to get 3.
a=\frac{3}{3}
Divide both sides by 3.
a=1
Divide 3 by 3 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}