Solve for x
x=\frac{1}{4}=0.25
Graph
Share
Copied to clipboard
\frac{2}{3}\times 6+\frac{2}{3}\left(-1\right)x-\frac{3}{4}\left(5-2x\right)=\frac{1}{6}\left(3-x\right)
Use the distributive property to multiply \frac{2}{3} by 6-x.
\frac{2\times 6}{3}+\frac{2}{3}\left(-1\right)x-\frac{3}{4}\left(5-2x\right)=\frac{1}{6}\left(3-x\right)
Express \frac{2}{3}\times 6 as a single fraction.
\frac{12}{3}+\frac{2}{3}\left(-1\right)x-\frac{3}{4}\left(5-2x\right)=\frac{1}{6}\left(3-x\right)
Multiply 2 and 6 to get 12.
4+\frac{2}{3}\left(-1\right)x-\frac{3}{4}\left(5-2x\right)=\frac{1}{6}\left(3-x\right)
Divide 12 by 3 to get 4.
4-\frac{2}{3}x-\frac{3}{4}\left(5-2x\right)=\frac{1}{6}\left(3-x\right)
Multiply \frac{2}{3} and -1 to get -\frac{2}{3}.
4-\frac{2}{3}x-\frac{3}{4}\times 5-\frac{3}{4}\left(-2\right)x=\frac{1}{6}\left(3-x\right)
Use the distributive property to multiply -\frac{3}{4} by 5-2x.
4-\frac{2}{3}x+\frac{-3\times 5}{4}-\frac{3}{4}\left(-2\right)x=\frac{1}{6}\left(3-x\right)
Express -\frac{3}{4}\times 5 as a single fraction.
4-\frac{2}{3}x+\frac{-15}{4}-\frac{3}{4}\left(-2\right)x=\frac{1}{6}\left(3-x\right)
Multiply -3 and 5 to get -15.
4-\frac{2}{3}x-\frac{15}{4}-\frac{3}{4}\left(-2\right)x=\frac{1}{6}\left(3-x\right)
Fraction \frac{-15}{4} can be rewritten as -\frac{15}{4} by extracting the negative sign.
4-\frac{2}{3}x-\frac{15}{4}+\frac{-3\left(-2\right)}{4}x=\frac{1}{6}\left(3-x\right)
Express -\frac{3}{4}\left(-2\right) as a single fraction.
4-\frac{2}{3}x-\frac{15}{4}+\frac{6}{4}x=\frac{1}{6}\left(3-x\right)
Multiply -3 and -2 to get 6.
4-\frac{2}{3}x-\frac{15}{4}+\frac{3}{2}x=\frac{1}{6}\left(3-x\right)
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{16}{4}-\frac{2}{3}x-\frac{15}{4}+\frac{3}{2}x=\frac{1}{6}\left(3-x\right)
Convert 4 to fraction \frac{16}{4}.
\frac{16-15}{4}-\frac{2}{3}x+\frac{3}{2}x=\frac{1}{6}\left(3-x\right)
Since \frac{16}{4} and \frac{15}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}-\frac{2}{3}x+\frac{3}{2}x=\frac{1}{6}\left(3-x\right)
Subtract 15 from 16 to get 1.
\frac{1}{4}+\frac{5}{6}x=\frac{1}{6}\left(3-x\right)
Combine -\frac{2}{3}x and \frac{3}{2}x to get \frac{5}{6}x.
\frac{1}{4}+\frac{5}{6}x=\frac{1}{6}\times 3+\frac{1}{6}\left(-1\right)x
Use the distributive property to multiply \frac{1}{6} by 3-x.
\frac{1}{4}+\frac{5}{6}x=\frac{3}{6}+\frac{1}{6}\left(-1\right)x
Multiply \frac{1}{6} and 3 to get \frac{3}{6}.
\frac{1}{4}+\frac{5}{6}x=\frac{1}{2}+\frac{1}{6}\left(-1\right)x
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{1}{4}+\frac{5}{6}x=\frac{1}{2}-\frac{1}{6}x
Multiply \frac{1}{6} and -1 to get -\frac{1}{6}.
\frac{1}{4}+\frac{5}{6}x+\frac{1}{6}x=\frac{1}{2}
Add \frac{1}{6}x to both sides.
\frac{1}{4}+x=\frac{1}{2}
Combine \frac{5}{6}x and \frac{1}{6}x to get x.
x=\frac{1}{2}-\frac{1}{4}
Subtract \frac{1}{4} from both sides.
x=\frac{2}{4}-\frac{1}{4}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{1}{4} to fractions with denominator 4.
x=\frac{2-1}{4}
Since \frac{2}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
x=\frac{1}{4}
Subtract 1 from 2 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}