Solve for x
x=\frac{1}{3}\approx 0.333333333
Graph
Share
Copied to clipboard
2\left(4x-1\right)-3\left(2x-\frac{17x}{3}\right)=1x+4
Multiply both sides of the equation by 3.
8x-2-3\left(2x-\frac{17x}{3}\right)=1x+4
Use the distributive property to multiply 2 by 4x-1.
8x-2-3\left(2x-\frac{17x}{3}\right)-x=4
Subtract 1x from both sides.
3\left(8x-2-3\left(2x-\frac{17x}{3}\right)\right)-3x=12
Multiply both sides of the equation by 3.
9\left(8x-2-3\left(2x-\frac{17x}{3}\right)\right)-9x=36
Multiply both sides of the equation by 3.
9\left(8x-2-6x+3\times \frac{17x}{3}\right)-9x=36
Use the distributive property to multiply -3 by 2x-\frac{17x}{3}.
9\left(8x-2-6x+\frac{3\times 17x}{3}\right)-9x=36
Express 3\times \frac{17x}{3} as a single fraction.
9\left(8x-2-6x+17x\right)-9x=36
Cancel out 3 and 3.
9\left(8x-2+11x\right)-9x=36
Combine -6x and 17x to get 11x.
9\left(19x-2\right)-9x=36
Combine 8x and 11x to get 19x.
171x-18-9x=36
Use the distributive property to multiply 9 by 19x-2.
162x-18=36
Combine 171x and -9x to get 162x.
162x=36+18
Add 18 to both sides.
162x=54
Add 36 and 18 to get 54.
x=\frac{54}{162}
Divide both sides by 162.
x=\frac{1}{3}
Reduce the fraction \frac{54}{162} to lowest terms by extracting and canceling out 54.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}