Solve for x
x=2
Graph
Share
Copied to clipboard
\frac{2}{3}\times 2x+\frac{2}{3}\times 5=2\left(3-4x\right)+16
Use the distributive property to multiply \frac{2}{3} by 2x+5.
\frac{2\times 2}{3}x+\frac{2}{3}\times 5=2\left(3-4x\right)+16
Express \frac{2}{3}\times 2 as a single fraction.
\frac{4}{3}x+\frac{2}{3}\times 5=2\left(3-4x\right)+16
Multiply 2 and 2 to get 4.
\frac{4}{3}x+\frac{2\times 5}{3}=2\left(3-4x\right)+16
Express \frac{2}{3}\times 5 as a single fraction.
\frac{4}{3}x+\frac{10}{3}=2\left(3-4x\right)+16
Multiply 2 and 5 to get 10.
\frac{4}{3}x+\frac{10}{3}=6-8x+16
Use the distributive property to multiply 2 by 3-4x.
\frac{4}{3}x+\frac{10}{3}=22-8x
Add 6 and 16 to get 22.
\frac{4}{3}x+\frac{10}{3}+8x=22
Add 8x to both sides.
\frac{28}{3}x+\frac{10}{3}=22
Combine \frac{4}{3}x and 8x to get \frac{28}{3}x.
\frac{28}{3}x=22-\frac{10}{3}
Subtract \frac{10}{3} from both sides.
\frac{28}{3}x=\frac{66}{3}-\frac{10}{3}
Convert 22 to fraction \frac{66}{3}.
\frac{28}{3}x=\frac{66-10}{3}
Since \frac{66}{3} and \frac{10}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{28}{3}x=\frac{56}{3}
Subtract 10 from 66 to get 56.
x=\frac{56}{3}\times \frac{3}{28}
Multiply both sides by \frac{3}{28}, the reciprocal of \frac{28}{3}.
x=\frac{56\times 3}{3\times 28}
Multiply \frac{56}{3} times \frac{3}{28} by multiplying numerator times numerator and denominator times denominator.
x=\frac{56}{28}
Cancel out 3 in both numerator and denominator.
x=2
Divide 56 by 28 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}