Solve for x
x=-10
Graph
Share
Copied to clipboard
4\left(\frac{x}{2}-6\right)=24\left(\frac{x}{3}+\frac{3}{2}\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2.
4\times \frac{x}{2}-24=24\left(\frac{x}{3}+\frac{3}{2}\right)
Use the distributive property to multiply 4 by \frac{x}{2}-6.
2x-24=24\left(\frac{x}{3}+\frac{3}{2}\right)
Cancel out 2, the greatest common factor in 4 and 2.
2x-24=24\left(\frac{2x}{6}+\frac{3\times 3}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{x}{3} times \frac{2}{2}. Multiply \frac{3}{2} times \frac{3}{3}.
2x-24=24\times \frac{2x+3\times 3}{6}
Since \frac{2x}{6} and \frac{3\times 3}{6} have the same denominator, add them by adding their numerators.
2x-24=24\times \frac{2x+9}{6}
Do the multiplications in 2x+3\times 3.
2x-24=4\left(2x+9\right)
Cancel out 6, the greatest common factor in 24 and 6.
2x-24=8x+36
Use the distributive property to multiply 4 by 2x+9.
2x-24-8x=36
Subtract 8x from both sides.
-6x-24=36
Combine 2x and -8x to get -6x.
-6x=36+24
Add 24 to both sides.
-6x=60
Add 36 and 24 to get 60.
x=\frac{60}{-6}
Divide both sides by -6.
x=-10
Divide 60 by -6 to get -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}