Evaluate
-\frac{221d}{60}
Expand
-\frac{221d}{60}
Share
Copied to clipboard
\frac{2}{3}\left(\frac{9}{4}d\left(-\frac{6+1}{3}\right)+\frac{7}{4}d\right)+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Multiply 2 and 3 to get 6.
\frac{2}{3}\left(\frac{9}{4}d\left(-\frac{7}{3}\right)+\frac{7}{4}d\right)+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Add 6 and 1 to get 7.
\frac{2}{3}\left(\frac{9\left(-7\right)}{4\times 3}d+\frac{7}{4}d\right)+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Multiply \frac{9}{4} times -\frac{7}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}\left(\frac{-63}{12}d+\frac{7}{4}d\right)+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Do the multiplications in the fraction \frac{9\left(-7\right)}{4\times 3}.
\frac{2}{3}\left(-\frac{21}{4}d+\frac{7}{4}d\right)+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Reduce the fraction \frac{-63}{12} to lowest terms by extracting and canceling out 3.
\frac{2}{3}\left(-\frac{7}{2}\right)d+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Combine -\frac{21}{4}d and \frac{7}{4}d to get -\frac{7}{2}d.
\frac{2\left(-7\right)}{3\times 2}d+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Multiply \frac{2}{3} times -\frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-7}{3}d+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Cancel out 2 in both numerator and denominator.
-\frac{7}{3}d+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Fraction \frac{-7}{3} can be rewritten as -\frac{7}{3} by extracting the negative sign.
-\frac{7}{3}d+\frac{3}{5}\left(\left(-\frac{6+2}{3}\right)d+\frac{5}{12}d\right)
Multiply 2 and 3 to get 6.
-\frac{7}{3}d+\frac{3}{5}\left(-\frac{8}{3}d+\frac{5}{12}d\right)
Add 6 and 2 to get 8.
-\frac{7}{3}d+\frac{3}{5}\left(-\frac{9}{4}\right)d
Combine -\frac{8}{3}d and \frac{5}{12}d to get -\frac{9}{4}d.
-\frac{7}{3}d+\frac{3\left(-9\right)}{5\times 4}d
Multiply \frac{3}{5} times -\frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{7}{3}d+\frac{-27}{20}d
Do the multiplications in the fraction \frac{3\left(-9\right)}{5\times 4}.
-\frac{7}{3}d-\frac{27}{20}d
Fraction \frac{-27}{20} can be rewritten as -\frac{27}{20} by extracting the negative sign.
-\frac{221}{60}d
Combine -\frac{7}{3}d and -\frac{27}{20}d to get -\frac{221}{60}d.
\frac{2}{3}\left(\frac{9}{4}d\left(-\frac{6+1}{3}\right)+\frac{7}{4}d\right)+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Multiply 2 and 3 to get 6.
\frac{2}{3}\left(\frac{9}{4}d\left(-\frac{7}{3}\right)+\frac{7}{4}d\right)+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Add 6 and 1 to get 7.
\frac{2}{3}\left(\frac{9\left(-7\right)}{4\times 3}d+\frac{7}{4}d\right)+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Multiply \frac{9}{4} times -\frac{7}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{3}\left(\frac{-63}{12}d+\frac{7}{4}d\right)+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Do the multiplications in the fraction \frac{9\left(-7\right)}{4\times 3}.
\frac{2}{3}\left(-\frac{21}{4}d+\frac{7}{4}d\right)+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Reduce the fraction \frac{-63}{12} to lowest terms by extracting and canceling out 3.
\frac{2}{3}\left(-\frac{7}{2}\right)d+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Combine -\frac{21}{4}d and \frac{7}{4}d to get -\frac{7}{2}d.
\frac{2\left(-7\right)}{3\times 2}d+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Multiply \frac{2}{3} times -\frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-7}{3}d+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Cancel out 2 in both numerator and denominator.
-\frac{7}{3}d+\frac{3}{5}\left(\left(-\frac{2\times 3+2}{3}\right)d+\frac{5}{12}d\right)
Fraction \frac{-7}{3} can be rewritten as -\frac{7}{3} by extracting the negative sign.
-\frac{7}{3}d+\frac{3}{5}\left(\left(-\frac{6+2}{3}\right)d+\frac{5}{12}d\right)
Multiply 2 and 3 to get 6.
-\frac{7}{3}d+\frac{3}{5}\left(-\frac{8}{3}d+\frac{5}{12}d\right)
Add 6 and 2 to get 8.
-\frac{7}{3}d+\frac{3}{5}\left(-\frac{9}{4}\right)d
Combine -\frac{8}{3}d and \frac{5}{12}d to get -\frac{9}{4}d.
-\frac{7}{3}d+\frac{3\left(-9\right)}{5\times 4}d
Multiply \frac{3}{5} times -\frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{7}{3}d+\frac{-27}{20}d
Do the multiplications in the fraction \frac{3\left(-9\right)}{5\times 4}.
-\frac{7}{3}d-\frac{27}{20}d
Fraction \frac{-27}{20} can be rewritten as -\frac{27}{20} by extracting the negative sign.
-\frac{221}{60}d
Combine -\frac{7}{3}d and -\frac{27}{20}d to get -\frac{221}{60}d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}