Solve for y
y = -\frac{11}{5} = -2\frac{1}{5} = -2.2
Graph
Share
Copied to clipboard
\frac{5}{5}y+\frac{3}{6}=\frac{2}{4}y-\frac{3}{5}
Cancel out \frac{2}{3} on both sides.
1y+\frac{3}{6}=\frac{2}{4}y-\frac{3}{5}
Divide 5 by 5 to get 1.
1y+\frac{1}{2}=\frac{2}{4}y-\frac{3}{5}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
1y+\frac{1}{2}=\frac{1}{2}y-\frac{3}{5}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
1y+\frac{1}{2}-\frac{1}{2}y=-\frac{3}{5}
Subtract \frac{1}{2}y from both sides.
\frac{1}{2}y+\frac{1}{2}=-\frac{3}{5}
Combine 1y and -\frac{1}{2}y to get \frac{1}{2}y.
\frac{1}{2}y=-\frac{3}{5}-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
\frac{1}{2}y=-\frac{6}{10}-\frac{5}{10}
Least common multiple of 5 and 2 is 10. Convert -\frac{3}{5} and \frac{1}{2} to fractions with denominator 10.
\frac{1}{2}y=\frac{-6-5}{10}
Since -\frac{6}{10} and \frac{5}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}y=-\frac{11}{10}
Subtract 5 from -6 to get -11.
y=-\frac{11}{10}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
y=\frac{-11\times 2}{10}
Express -\frac{11}{10}\times 2 as a single fraction.
y=\frac{-22}{10}
Multiply -11 and 2 to get -22.
y=-\frac{11}{5}
Reduce the fraction \frac{-22}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}