Skip to main content
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

4\left(\frac{1}{3}x-\frac{1}{2}\right)=24x+3\left(2\times 2+1\right)i
Multiply both sides of the equation by 6, the least common multiple of 3,2.
4\times \frac{1}{3}x+4\left(-\frac{1}{2}\right)=24x+3\left(2\times 2+1\right)i
Use the distributive property to multiply 4 by \frac{1}{3}x-\frac{1}{2}.
\frac{4}{3}x+4\left(-\frac{1}{2}\right)=24x+3\left(2\times 2+1\right)i
Multiply 4 and \frac{1}{3} to get \frac{4}{3}.
\frac{4}{3}x+\frac{4\left(-1\right)}{2}=24x+3\left(2\times 2+1\right)i
Express 4\left(-\frac{1}{2}\right) as a single fraction.
\frac{4}{3}x+\frac{-4}{2}=24x+3\left(2\times 2+1\right)i
Multiply 4 and -1 to get -4.
\frac{4}{3}x-2=24x+3\left(2\times 2+1\right)i
Divide -4 by 2 to get -2.
\frac{4}{3}x-2=24x+3\left(4+1\right)i
Multiply 2 and 2 to get 4.
\frac{4}{3}x-2=24x+3\times \left(5i\right)
Add 4 and 1 to get 5.
\frac{4}{3}x-2=24x+15i
Multiply 3 and 5i to get 15i.
\frac{4}{3}x-2-24x=15i
Subtract 24x from both sides.
-\frac{68}{3}x-2=15i
Combine \frac{4}{3}x and -24x to get -\frac{68}{3}x.
-\frac{68}{3}x=15i+2
Add 2 to both sides.
-\frac{68}{3}x=2+15i
The equation is in standard form.
\frac{-\frac{68}{3}x}{-\frac{68}{3}}=\frac{2+15i}{-\frac{68}{3}}
Divide both sides of the equation by -\frac{68}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{2+15i}{-\frac{68}{3}}
Dividing by -\frac{68}{3} undoes the multiplication by -\frac{68}{3}.
x=-\frac{3}{34}-\frac{45}{68}i
Divide 2+15i by -\frac{68}{3} by multiplying 2+15i by the reciprocal of -\frac{68}{3}.